Research Article
BibTex RIS Cite
Year 2023, , 143 - 147, 26.03.2023
https://doi.org/10.17776/csj.1081636

Abstract

Supporting Institution

FIRAT ÜNİVERSİTESİ

Thanks

Sayın editör ; Göndermiş olduğum makaleyi incelemenizi rica ederim. Saygılarımla...

References

  • [1] Nishimoto K., An essence of Nishimoto's Fractional Calculus (Calculus in the 21st century): Integrations and Differentiations of Arbitrary Order, Descartes Press Company, Koriyama, (1991).
  • [2] Weilber M., Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background, Ph. D. Thesis, Von der Carl-Friedrich-Gaub-Fakultur Mathematic and Informatik der Te chnis-chen University, 2005.
  • [3] Khalil, R., Al Harani, M., Yousef A., Sababheh M., A new definition of fractional derivative, J. Comput and Applied Mathematics, 264 (2014) 65-70.
  • [4] Baleanu, D., Vacaru, S., Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics, Open Physics, 9(5) (2011) 1267-1279.
  • [5] Baleanu, D., Vacaru, S. I., Fractional almost Kähler–Lagrange geometry, Nonlinear Dynamics, 64(4) 365-373.
  • [6] Abdeljawad, T., Alzabut, J., Jarad, F., A generalized Lyapunov-type inequality in the frame of conformable derivatives, Advances in Difference Equations, 2017(1) 1-10.
  • [7] Abdeljawad, T., Agarwal, R. P., Alzabut, J., Jarad, F., Özbekler, A., Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives, Journal of Inequalities and Applications, 1 (2018) 1-17.
  • [8] Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open Mathematics, 13(1) (2015).
  • [9] Anderson, D. R., Ulness, D. J., Newly Defined Comformable Derivatives Centered Polygonal Lacunary Functions View project Dynamic Equations on Times Scales View Project Newly Defined Comformable Derivatives, Advances in Dynamical Systems and Applications, 10(2) (2015) 109-137.
  • [10] Aminikhah H., Sheikhani A.H.R., Rezazadeh H., Sub-equation method fort he fractional regularized long-wave equations with comformable fractional derivatives, Sci. Iran, 23 (2016) 1048-1054.
  • [11] Gözütok U., Çoban H., Sağıroğlu Y., Frenet frame with respect to conformable derivative, Filomat., 33 (6) (2019).
  • [12] Mağden A., Yılmaz S., Ünlütürk Y., Characterizations of special time-like curves in Lorentzian plane , International Journal of Geometric Methods In Modern Physics., 14 (10) (2017).

The Differential Equations of Conformable Curve in IR^2

Year 2023, , 143 - 147, 26.03.2023
https://doi.org/10.17776/csj.1081636

Abstract

In this paper, we get some characterizations of conformable curve in R^2. We investigate the conformable curve in R^2. We define the tangent vector of the curve using the conformable derivative and the arc parameter s. Then, we get the Frenet formulas with conformable frames. Moreover, we define the location vector of conformable curve according to Frenet frame in the plane R^2.
Finally, we obtain the differential equation characterizing location vector and curvature of conformable curve in the plane R^2.

References

  • [1] Nishimoto K., An essence of Nishimoto's Fractional Calculus (Calculus in the 21st century): Integrations and Differentiations of Arbitrary Order, Descartes Press Company, Koriyama, (1991).
  • [2] Weilber M., Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background, Ph. D. Thesis, Von der Carl-Friedrich-Gaub-Fakultur Mathematic and Informatik der Te chnis-chen University, 2005.
  • [3] Khalil, R., Al Harani, M., Yousef A., Sababheh M., A new definition of fractional derivative, J. Comput and Applied Mathematics, 264 (2014) 65-70.
  • [4] Baleanu, D., Vacaru, S., Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics, Open Physics, 9(5) (2011) 1267-1279.
  • [5] Baleanu, D., Vacaru, S. I., Fractional almost Kähler–Lagrange geometry, Nonlinear Dynamics, 64(4) 365-373.
  • [6] Abdeljawad, T., Alzabut, J., Jarad, F., A generalized Lyapunov-type inequality in the frame of conformable derivatives, Advances in Difference Equations, 2017(1) 1-10.
  • [7] Abdeljawad, T., Agarwal, R. P., Alzabut, J., Jarad, F., Özbekler, A., Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives, Journal of Inequalities and Applications, 1 (2018) 1-17.
  • [8] Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open Mathematics, 13(1) (2015).
  • [9] Anderson, D. R., Ulness, D. J., Newly Defined Comformable Derivatives Centered Polygonal Lacunary Functions View project Dynamic Equations on Times Scales View Project Newly Defined Comformable Derivatives, Advances in Dynamical Systems and Applications, 10(2) (2015) 109-137.
  • [10] Aminikhah H., Sheikhani A.H.R., Rezazadeh H., Sub-equation method fort he fractional regularized long-wave equations with comformable fractional derivatives, Sci. Iran, 23 (2016) 1048-1054.
  • [11] Gözütok U., Çoban H., Sağıroğlu Y., Frenet frame with respect to conformable derivative, Filomat., 33 (6) (2019).
  • [12] Mağden A., Yılmaz S., Ünlütürk Y., Characterizations of special time-like curves in Lorentzian plane , International Journal of Geometric Methods In Modern Physics., 14 (10) (2017).
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Natural Sciences
Authors

Şeyda Özel 0000-0002-1519-2418

Mehmet Bektaş 0000-0002-5797-4944

Publication Date March 26, 2023
Submission Date March 2, 2022
Acceptance Date December 19, 2022
Published in Issue Year 2023

Cite

APA Özel, Ş., & Bektaş, M. (2023). The Differential Equations of Conformable Curve in IR^2. Cumhuriyet Science Journal, 44(1), 143-147. https://doi.org/10.17776/csj.1081636