Research Article
BibTex RIS Cite

Sliding Mode Controller Design and Comparison with Feed Forward +PI Controller for Fluid Level System Control of Couple Tank

Year 2022, Volume: 9 Issue: 2, 901 - 917, 31.12.2022
https://doi.org/10.35193/bseufbd.1100155

Abstract

In this article, sliding mode control (SMC) is applied to the Couple-Tank system, which is the typical application of the fluid level tank system used in industrial facilities and its control is examined. The mathematical model of the nonlinear Couple-Tank system was found out for both tank systems. The system was designed by combining  the dynamic equations of the Couple-Tank system with the sliding mode control. The important aspect of SMC is to control a nonlinear dynamic system that is exposure to external disturbances or uncertainties using a switching function that ensures that the system states remain on the slip surface. The sliding mode control (SMC) was chosen by the author because of its robustness against parameter changes and distortions. In this article, the second order SMC technique is used to avoid the unwanted chattering effect. The control signal for the sliding mode control was calculated as the sum of the switching control signal and the equivalent control signal. The transfer function of the nonlinear Couple-Tank system was calculated by the Taylor series linearization method. In this article, the Tank 2 transfer function was determined by the ratio of the input voltage of the system to the fluid level. The sliding mode control applied to the Couple-Tank system and the feed forward PI controller (FF-PI), which is another type of control, are compared. The monitoring of the measured fluid level to the reference fluid level and error detection between the measured liquid level and the desired fluid level were examined in the simulation environment of the Couple-Tank system designed by applying the sliding mode control (SMC). It has been observed that the system designed with sliding mode control (SMC) can follow the desired fluid level quite successfully.

References

  • Liang, L. (2011, September). The application of fuzzy PID controller in coupled-tank liquid-level control system. In 2011 International Conference on Electronics, Communications and Control (ICECC) (pp. 2894-2897). IEEE.
  • Pan, H., Wong, H., Kapila, V., & de Queiroz, M. S. (2005). Experimental validation of a nonlinear backstepping liquid level controller for a state coupled two tank system. Control Engineering Practice, 13(1), 27-40.
  • Ramli, M. S., Ahmad, M. A., & Ismail, R. M. T. R. (2009, November). Comparison of swarm adaptive neural network control of a coupled tank liquid level system. In 2009 International Conference on Computer Technology and Development (Vol. 1, pp. 130-135). IEEE.
  • Bhuvaneswari, N. S., Uma, G., & Rangaswamy, T. R. (2009). Adaptive and optimal control of a non-linear process using intelligent controllers. Applied soft computing, 9(1), 182-190.
  • Delavari, H., Ranjbar, A. N., Ghaderi, R., & Momani, S. (2010). Fractional order control of a coupled tank. Nonlinear Dynamics, 61(3), 383-397.
  • Pan, H., Wong, H., Kapila, V., & de Queiroz, M. S. (2005). Experimental validation of a nonlinear backstepping liquid level controller for a state coupled two tank system. Control Engineering Practice, 13(1), 27-40.
  • Gouta, H., Said, S. H., Barhoumi, N., & M'Sahli, F. (2015). Observer-based backstepping controller for a state-coupled two-tank system. IETE Journal of Research, 61(3), 259-268.
  • Abdullah, A., & Zribi, M. (2012). Sensor-fault-tolerant control for a class of linear parameter varying systems with practical examples. IEEE transactions on industrial Electronics, 60(11), 5239-5251.
  • Mobayen, S. (2016). A novel global sliding mode control based on exponential reaching law for a class of underactuated systems with external disturbances. Journal of Computational and Nonlinear Dynamics, 11(2).
  • Mobayen, S. (2015). An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems. Nonlinear Dynamics, 82(1), 599-610.
  • Edwards, C., & Spurgeon, S. K. (1995). Sliding mode stabilization of uncertain systems using only output information. International Journal of Control, 62(5), 1129-1144.
  • Boiko, I., & Fridman, L. (2005). Analysis of chattering in continuous sliding-mode controllers. IEEE transactions on automatic control, 50(9), 1442-1446.
  • Bartolini, G., Ferrara, A., & Usai, E. (1998). Chattering avoidance by second-order sliding mode control. IEEE Transactions on automatic control, 43(2), 241-246.
  • Fridman, L., & Levant, A. (2002). Higher order sliding modes. Sliding mode control in engineering, 11, 53-102.
  • Azar, A. T., & Zhu, Q. (Eds.). (2015). Advances and applications in sliding mode control systems. Cham: Springer International Publishing, 6-9.
  • Tijjani, A. S., Shehu, M. A., Alsabari, A. M., Sambo, Y. A., & Tanko, N. L. (2017). Performance analysis for coupled-tank system liquid level control using MPC, PI and PI-plus-Feedforward Control Scheme. Journal of Robotics and Automation, 1(1), 42-53.
  • Eker, I. (2010). Second-order sliding mode control with experimental application. ISA transactions, 49(3), 394-405.

İkili Tank Akışkan Seviye Sisteminin Kontrolü İçin Kayan Kipli Kontrolcü Tasarımı ve İleri Besleme + PI Kontrolcü Karşılaştırılması

Year 2022, Volume: 9 Issue: 2, 901 - 917, 31.12.2022
https://doi.org/10.35193/bseufbd.1100155

Abstract

Bu makalede endüstri tesislerinde kullanılan akışkan seviye tank sisteminin tipik uygulaması olan İkili-Tank sistemine kayan kipli kontrol (SMC) uygulanarak kontrolü incelenmiştir. Doğrusal olmayan İkili-Tank sisteminin matematiksel modeli her iki tank sistemi için çıkarılmıştır. İkili-Tank sisteminin dinamik Denklemleri, kayan kipli kontrol ile birleştirilerek sistem tasarlanmıştır. SMC'nin önemli yönü, sistem durumlarının kayma yüzeyinde kalmasını sağlayan bir anahtarlama işlevi kullanarak dış bozuculara veya belirsizliklere maruz kalan doğrusal olmayan bir dinamik sistemi kontrol etmektir. Yazar tarafından kayan kipli kontrol (SMC), parametre değişimlerine ve bozulmalara karşı sağlamlığı nedeniyle tercih edilmiştir. Bu makalede istenmeyen çatırdama etkisinden kaçınmak için ikinci dereceden SMC tekniği kullanılmıştır. Kayan kipli kontrol için kontrol işareti, anahtarlama kontrol işareti ile eşdeğer kontrol işaretinin toplamı olacak şekilde hesaplanmıştır. Doğrusal olmayan İkili-Tank sisteminin transfer fonksiyonu, Taylor serisi doğrusallaştırma yöntemiyle hesaplanmıştır. Bu makalede Tank 2 transfer fonksiyonu, sistemin giriş geriliminin akışkan seviyesine oranıyla belirlenmiştir. Transfer fonksiyonu için İkili-Tank sistemine uygulanan kayan kipli kontrol ile başka bir kontrol şekli olan ileri beslemeli PI denetleyicisi (FF-PI) karşılaştırılmıştır. Kayan kipli kontrol (SMC) uygulanarak tasarlanan İkili-Tank sisteminin MATLAB-Simulink simülasyon ortamında ölçülen akışkan seviyenin, referans akışkan seviyesine takibi ve ölçülen akışkan seviyesi ile istenilen akışkan seviyesi arasındaki hata tespiti incelenmiştir. Kayan kipli kontrol (SMC) ile tasarlanan sistem oldukça başarılı bir şekilde istenilen akışkan seviyesini takip edebildiği gözlemlenmiştir.

References

  • Liang, L. (2011, September). The application of fuzzy PID controller in coupled-tank liquid-level control system. In 2011 International Conference on Electronics, Communications and Control (ICECC) (pp. 2894-2897). IEEE.
  • Pan, H., Wong, H., Kapila, V., & de Queiroz, M. S. (2005). Experimental validation of a nonlinear backstepping liquid level controller for a state coupled two tank system. Control Engineering Practice, 13(1), 27-40.
  • Ramli, M. S., Ahmad, M. A., & Ismail, R. M. T. R. (2009, November). Comparison of swarm adaptive neural network control of a coupled tank liquid level system. In 2009 International Conference on Computer Technology and Development (Vol. 1, pp. 130-135). IEEE.
  • Bhuvaneswari, N. S., Uma, G., & Rangaswamy, T. R. (2009). Adaptive and optimal control of a non-linear process using intelligent controllers. Applied soft computing, 9(1), 182-190.
  • Delavari, H., Ranjbar, A. N., Ghaderi, R., & Momani, S. (2010). Fractional order control of a coupled tank. Nonlinear Dynamics, 61(3), 383-397.
  • Pan, H., Wong, H., Kapila, V., & de Queiroz, M. S. (2005). Experimental validation of a nonlinear backstepping liquid level controller for a state coupled two tank system. Control Engineering Practice, 13(1), 27-40.
  • Gouta, H., Said, S. H., Barhoumi, N., & M'Sahli, F. (2015). Observer-based backstepping controller for a state-coupled two-tank system. IETE Journal of Research, 61(3), 259-268.
  • Abdullah, A., & Zribi, M. (2012). Sensor-fault-tolerant control for a class of linear parameter varying systems with practical examples. IEEE transactions on industrial Electronics, 60(11), 5239-5251.
  • Mobayen, S. (2016). A novel global sliding mode control based on exponential reaching law for a class of underactuated systems with external disturbances. Journal of Computational and Nonlinear Dynamics, 11(2).
  • Mobayen, S. (2015). An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems. Nonlinear Dynamics, 82(1), 599-610.
  • Edwards, C., & Spurgeon, S. K. (1995). Sliding mode stabilization of uncertain systems using only output information. International Journal of Control, 62(5), 1129-1144.
  • Boiko, I., & Fridman, L. (2005). Analysis of chattering in continuous sliding-mode controllers. IEEE transactions on automatic control, 50(9), 1442-1446.
  • Bartolini, G., Ferrara, A., & Usai, E. (1998). Chattering avoidance by second-order sliding mode control. IEEE Transactions on automatic control, 43(2), 241-246.
  • Fridman, L., & Levant, A. (2002). Higher order sliding modes. Sliding mode control in engineering, 11, 53-102.
  • Azar, A. T., & Zhu, Q. (Eds.). (2015). Advances and applications in sliding mode control systems. Cham: Springer International Publishing, 6-9.
  • Tijjani, A. S., Shehu, M. A., Alsabari, A. M., Sambo, Y. A., & Tanko, N. L. (2017). Performance analysis for coupled-tank system liquid level control using MPC, PI and PI-plus-Feedforward Control Scheme. Journal of Robotics and Automation, 1(1), 42-53.
  • Eker, I. (2010). Second-order sliding mode control with experimental application. ISA transactions, 49(3), 394-405.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sadrettin Gölcügezli 0000-0002-6889-3947

Ahmet Dumlu 0000-0002-2181-5386

Publication Date December 31, 2022
Submission Date April 7, 2022
Acceptance Date August 15, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Gölcügezli, S., & Dumlu, A. (2022). İkili Tank Akışkan Seviye Sisteminin Kontrolü İçin Kayan Kipli Kontrolcü Tasarımı ve İleri Besleme + PI Kontrolcü Karşılaştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2), 901-917. https://doi.org/10.35193/bseufbd.1100155