Research Article
BibTex RIS Cite

Year 2025, Volume: 46 Issue: 4, 949 - 956, 30.12.2025
https://doi.org/10.17776/csj.1737885

Abstract

References

  • [1] Bhalla A. S., Cross L. E., Whatmore R. W., Pyroelectric and piezoelectric properties of lithium tetraborate single crystal, Japanese Journal of Applied Physics, 24(S2) (1985) 727.
  • [2] Adamiv V. T., Burak Y. V., Wooten D. J., McClory J., Petrosky J., Ketsman I., Xiao J., Losovyj Y. B., Dowben P. A., The electronic structure and secondary pyroelectric properties of lithium tetraborate, Materials, 3(9) (2010) 4550–4579.
  • [3] Ketsman I., Wooten D., Xiao J., Losovyj Y. B., Burak Y. V., Adamiv V. T., Sokolov A., Petrosky J., McClory J., Dowben P. A., The off-axis pyroelectric effect observed for lithium tetraborate, Physics Letters A, 374(6) (2010) 891–895.
  • [4] Marzouk Z. G., Dhingra A., Burak Y., Adamiv V., Teslyuk I., Dowben P. A., Long carrier lifetimes in crystalline lithium tetraborate, Materials Letters, 297 (2021) 129978.
  • [5] Zadneprovski B. I., Eremin N. V., Paskhalov A. A., New inorganic scintillators on the basis of LBO glass for neutron registration, Functional Materials, 12(2) (2005) 261–268.
  • [6] Kindrat I. I., Padlyak B. V., Drzewiecki A., Adamiv V. T., Teslyuk I. M., Influence of Ag co-activation on the Dy³⁺ luminescence in lithium tetraborate glasses, Materials Research Bulletin, 179 (2024) 112979.
  • [7] Lucas J., Lucas P., Mercier T. L., Rollat A., Davenport W. G., Rare earths: Science, technology, production and use, Elsevier, (2014). [8] Kindrat I. I., Padlyak B. V., Drzewiecki A., Teslyuk I. M., Adamiv V. T., The impact of silver codoping on Tb³⁺ luminescence in lithium tetraborate glasses, Luminescence, 40(1) (2025) e70074.
  • [9] Ullah B., Kakakhel M. B., Ur Rehman S., Siddique M. T., Munir M., Ahmad K., Mahmood M. M., Wazir-ud-Din M., Anjum I., Synthesis and dosimetric characterization of lithium tetraborate (Li₂B₄O₇:Cu,Ag) thermoluminescent dosimeter with improved reproducibility and reusability, Radiation Physics and Chemistry, 220 (2024) 111704.
  • [10] Echeverria E., McClory J., Samson L., Shene K., Colón Santana J. A., Burak Y., Adamiv V., Teslyuk I., Wang L., Mei W.-N., Nelson K. A., McGregor D. S., Dowben P. A., Ilie C. C., Petrosky J., Dhingra A., Lithium tetraborate as a neutron scintillation detector: A review, Crystals, 14(3) (2024) 229.
  • [11] Padlyak B. V., Kindrat I. I., Adamiv V. T., Teslyuk I. M., Drzewiecki A., Spectroscopic properties and luminescence of the lithium tetraborate glasses co-doped with manganese and europium, Optical Materials, 154 (2024) 115782.
  • [12] Sai Dinesh P., Kumar M., Ratnakaram Y. C., Impact of modifiers on structural and optical properties of Dy³⁺-doped lithium tetraborate glasses for W-LED applications, Infrared Physics & Technology, 136 (2024) 105029.
  • [13] Kouri M. A., Polychronidou K., Loukas G., Megapanou A., Vagena I.-A., Gerardos A. M., Spyratou E., Efstathopoulos E. P., Consolidation of gold and gadolinium nanoparticles: An extra step towards improving cancer imaging and therapy, Journal of Nanotheranostics, 4(2) (2023) 127–149.
  • [14] Vladimir D. R., Grinev B. V., Pirogov E. N., Onyshchenko G. M., Ivanov A. I., Valeriy G. B., Konstantin A. K., Sergiy A. K., Use of gadolinium oxyorthosilicate scintillators in X-ray radiometers, Optical Engineering, 44(1) (2005) 016403.
  • [15] Raymond K. N., Pierre V. C., Next generation, high relaxivity gadolinium MRI agents, Bioconjugate Chemistry, 16(1) (2005) 3–8.
  • [16] Gulbicim H., Akan H., Tufan M. C., Determination of X-ray photon absorption properties of some human tissues and organs using Monte Carlo method, Indian Journal of Pure & Applied Physics, 63(2) (2025) 132–143.
  • [17] Gülbiçim H., Tufan M. Ç., Türkan M. N., The investigation of vermiculite as an alternating shielding material for gamma rays, Radiation Physics and Chemistry, 130 (2017) 112–117.
  • [18] Zali V. S., Jahanbakhsh O., Ahadzadeh I., Preparation and evaluation of gamma shielding properties of silicon-based composites doped with WO₃ micro- and nanoparticles, Radiation Physics and Chemistry, 197 (2022) 110150.
  • [19] Alomari A. H., BaO-doped Na₂O–CaO–P₂O₅ bioactive glasses: A closer look at radiation attenuation properties for medical applications, Radiation Physics and Chemistry, 223 (2024) 112019.
  • [20] Akkurt I., El-Khayatt A. M., Effective atomic number and electron density of marble concrete, Journal of Radioanalytical and Nuclear Chemistry, 295(1) (2013) 633–638.
  • [21] Prasad S. G., Parthasaradhi K., Bloomer W. D., Effective atomic numbers for photoabsorption in alloys in the energy region of absorption edges, Radiation Physics and Chemistry, 53(4) (1998) 449–453.
  • [22] Berger M. J., Seltzer S. M., Chang J., Coursey J. S., Sukumar R., Zucker D. S., Olsen K., XCOM: Photon cross sections database, National Institute of Standards and Technology, (2010).

Gamma Attenuation Properties of Li2B4O7 Doped with Gd

Year 2025, Volume: 46 Issue: 4, 949 - 956, 30.12.2025
https://doi.org/10.17776/csj.1737885

Abstract

In this study, the gamma attenuation properties of pure Li2B4O7 and 1 % mol Gd-doped Li2B4O7 were investigated using a gamma spectrometry system with narrow beam geometry. Samples were synthesized by the solid state reaction method. In the experimental part of the study, linear and mass attenuation coefficients were determined for 0.1218 MeV, 0.2447 MeV, 0.3443 MeV, 0.7789 MeV, 0.964 MeV, and 1.408 MeV energy peaks of Eu-152. The atomic and electronic cross sections, effective atomic number, and electron density, half value thickness (HVL), tenth value thickness (TVL), and mean free path (MFP) values were also calculated from these values. The obtained values were compared with XCOM values for theoretical data. It was found that Gd doping increased the attenuation coefficients in the low-energy region. However, its effects were limited at higher photon energies.

References

  • [1] Bhalla A. S., Cross L. E., Whatmore R. W., Pyroelectric and piezoelectric properties of lithium tetraborate single crystal, Japanese Journal of Applied Physics, 24(S2) (1985) 727.
  • [2] Adamiv V. T., Burak Y. V., Wooten D. J., McClory J., Petrosky J., Ketsman I., Xiao J., Losovyj Y. B., Dowben P. A., The electronic structure and secondary pyroelectric properties of lithium tetraborate, Materials, 3(9) (2010) 4550–4579.
  • [3] Ketsman I., Wooten D., Xiao J., Losovyj Y. B., Burak Y. V., Adamiv V. T., Sokolov A., Petrosky J., McClory J., Dowben P. A., The off-axis pyroelectric effect observed for lithium tetraborate, Physics Letters A, 374(6) (2010) 891–895.
  • [4] Marzouk Z. G., Dhingra A., Burak Y., Adamiv V., Teslyuk I., Dowben P. A., Long carrier lifetimes in crystalline lithium tetraborate, Materials Letters, 297 (2021) 129978.
  • [5] Zadneprovski B. I., Eremin N. V., Paskhalov A. A., New inorganic scintillators on the basis of LBO glass for neutron registration, Functional Materials, 12(2) (2005) 261–268.
  • [6] Kindrat I. I., Padlyak B. V., Drzewiecki A., Adamiv V. T., Teslyuk I. M., Influence of Ag co-activation on the Dy³⁺ luminescence in lithium tetraborate glasses, Materials Research Bulletin, 179 (2024) 112979.
  • [7] Lucas J., Lucas P., Mercier T. L., Rollat A., Davenport W. G., Rare earths: Science, technology, production and use, Elsevier, (2014). [8] Kindrat I. I., Padlyak B. V., Drzewiecki A., Teslyuk I. M., Adamiv V. T., The impact of silver codoping on Tb³⁺ luminescence in lithium tetraborate glasses, Luminescence, 40(1) (2025) e70074.
  • [9] Ullah B., Kakakhel M. B., Ur Rehman S., Siddique M. T., Munir M., Ahmad K., Mahmood M. M., Wazir-ud-Din M., Anjum I., Synthesis and dosimetric characterization of lithium tetraborate (Li₂B₄O₇:Cu,Ag) thermoluminescent dosimeter with improved reproducibility and reusability, Radiation Physics and Chemistry, 220 (2024) 111704.
  • [10] Echeverria E., McClory J., Samson L., Shene K., Colón Santana J. A., Burak Y., Adamiv V., Teslyuk I., Wang L., Mei W.-N., Nelson K. A., McGregor D. S., Dowben P. A., Ilie C. C., Petrosky J., Dhingra A., Lithium tetraborate as a neutron scintillation detector: A review, Crystals, 14(3) (2024) 229.
  • [11] Padlyak B. V., Kindrat I. I., Adamiv V. T., Teslyuk I. M., Drzewiecki A., Spectroscopic properties and luminescence of the lithium tetraborate glasses co-doped with manganese and europium, Optical Materials, 154 (2024) 115782.
  • [12] Sai Dinesh P., Kumar M., Ratnakaram Y. C., Impact of modifiers on structural and optical properties of Dy³⁺-doped lithium tetraborate glasses for W-LED applications, Infrared Physics & Technology, 136 (2024) 105029.
  • [13] Kouri M. A., Polychronidou K., Loukas G., Megapanou A., Vagena I.-A., Gerardos A. M., Spyratou E., Efstathopoulos E. P., Consolidation of gold and gadolinium nanoparticles: An extra step towards improving cancer imaging and therapy, Journal of Nanotheranostics, 4(2) (2023) 127–149.
  • [14] Vladimir D. R., Grinev B. V., Pirogov E. N., Onyshchenko G. M., Ivanov A. I., Valeriy G. B., Konstantin A. K., Sergiy A. K., Use of gadolinium oxyorthosilicate scintillators in X-ray radiometers, Optical Engineering, 44(1) (2005) 016403.
  • [15] Raymond K. N., Pierre V. C., Next generation, high relaxivity gadolinium MRI agents, Bioconjugate Chemistry, 16(1) (2005) 3–8.
  • [16] Gulbicim H., Akan H., Tufan M. C., Determination of X-ray photon absorption properties of some human tissues and organs using Monte Carlo method, Indian Journal of Pure & Applied Physics, 63(2) (2025) 132–143.
  • [17] Gülbiçim H., Tufan M. Ç., Türkan M. N., The investigation of vermiculite as an alternating shielding material for gamma rays, Radiation Physics and Chemistry, 130 (2017) 112–117.
  • [18] Zali V. S., Jahanbakhsh O., Ahadzadeh I., Preparation and evaluation of gamma shielding properties of silicon-based composites doped with WO₃ micro- and nanoparticles, Radiation Physics and Chemistry, 197 (2022) 110150.
  • [19] Alomari A. H., BaO-doped Na₂O–CaO–P₂O₅ bioactive glasses: A closer look at radiation attenuation properties for medical applications, Radiation Physics and Chemistry, 223 (2024) 112019.
  • [20] Akkurt I., El-Khayatt A. M., Effective atomic number and electron density of marble concrete, Journal of Radioanalytical and Nuclear Chemistry, 295(1) (2013) 633–638.
  • [21] Prasad S. G., Parthasaradhi K., Bloomer W. D., Effective atomic numbers for photoabsorption in alloys in the energy region of absorption edges, Radiation Physics and Chemistry, 53(4) (1998) 449–453.
  • [22] Berger M. J., Seltzer S. M., Chang J., Coursey J. S., Sukumar R., Zucker D. S., Olsen K., XCOM: Photon cross sections database, National Institute of Standards and Technology, (2010).
There are 21 citations in total.

Details

Primary Language English
Subjects Nuclear Physics
Journal Section Research Article
Authors

Hakan Eroğlu 0009-0004-4072-1846

Sümeyye Gümüş Uzun 0000-0003-1763-2373

Mustafa Çağatay Tufan 0000-0003-3110-5115

Bayram Bilmez 0000-0002-5687-2145

Mevlüt Gürbüz 0000-0003-2365-5918

Submission Date July 31, 2025
Acceptance Date September 16, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 46 Issue: 4

Cite

APA Eroğlu, H., Gümüş Uzun, S., Tufan, M. Ç., … Bilmez, B. (2025). Gamma Attenuation Properties of Li2B4O7 Doped with Gd. Cumhuriyet Science Journal, 46(4), 949-956. https://doi.org/10.17776/csj.1737885

Editor