Research Article
BibTex RIS Cite

Design, Synthesis, and Thermal Characterization of N,N′-Dibutyl-1,6-Hexanediammonium Based Protic Ionic Liquids for Phase Change Energy Storage Applications

Year 2025, Volume: 46 Issue: 4, 780 - 790, 30.12.2025
https://doi.org/10.17776/csj.1733240

Abstract

Protic ionic liquids (PILs) based on N,N′-Dibutyl-1,6-hexanediammonium were successfully synthesized using lauric, palmitic, and myristic acids as anionic counterparts for thermal energy storage (TES) materials. The structural characteristics of the resulting PILs were characterized using FT-IR, 1H, and 13C NMR spectroscopy, which confirmed effective proton transfer and the formation of ionic bonds between the cationic and anionic species. Thermal properties, including thermal stability were examined using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The values for the latent heat of fusion were recorded as 69.73, 88.73, and 98.95 kJ/mol for PIL1, PIL2, and PIL3, respectively. Moreover, the synthesized PILs exhibit thermal stability up to around 463.15 K. The synthesized PILs showed strong thermal stability and appropriate phase change temperatures, indicating their suitability as PCMs for TES systems. This study provides insights into the design and development of novel PILs tailored for efficient and sustainable energy storage applications.

References

  • [1] Martins F., Felgueiras C., Smitkova M., Caetano N., Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries, Energies, 12 (2019) 964.
  • [2] Dincer I., Thermal energy storage systems as a key technology in energy conservation, Int. J. Energy Res., 26 (2002) 567–588.
  • [3] Nazir H., Batool M., Bolivar Osorio F.J., Isaza-Ruiz M., Xu X., Vignarooban K., et al., Recent developments in phase change materials for energy storage applications: A review, Int. J. Heat Mass Transf., 129 (2019) 491–523.
  • [4] Ismail M.M., Dincer I., Bicer Y., Saghir M.Z., Nanoparticles enhanced phase change materials for thermal energy storage applications: An assessment, Int. J. Thermofluids, 27 (2025) 101207.
  • [5] Powell K.M., Kim J.S., Cole W.J., Kapoor K., Mojica J.L., Hedengren J.D., et al., Thermal energy storage to minimize cost and improve efficiency of a polygeneration district energy system in a real-time electricity market, Energy, 113 (2016) 52–63.
  • [6] Sarbu I., Sebarchievici C., A Comprehensive Review of Thermal Energy Storage, Sustainability, 10 (2018) 191.
  • [7] Hussain A., Arif S.M., Aslam M., Emerging renewable and sustainable energy technologies: State of the art, Renew. Sustain. Energy Rev., 71 (2017) 12–28.
  • [8] Farid M., Khudhair A.M., Razack S.A.K., Al-Hallaj S., A Review on Phase Change Energy Storage: Materials and Applications, in: Thermal Energy Storage with Phase Change Materials, (2021) 4–23.
  • [9] Ismail K.A.R., Lino F.A.M., Machado P.L.O., Teggar M., Arıcı M., Alves T.A., et al., New potential applications of phase change materials: A review, J. Energy Storage, 53 (2022) 105202.
  • [10] Javadi F.S., Metselaar H.S.C., Ganesan P., Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review, Sol. Energy, 206 (2020) 330–352.
  • [11] Lin Y., Jia Y., Alva G., Fang G., Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renew. Sustain. Energy Rev., 82 (2018) 2730–2742.
  • [12] Mohamed S.A., Al-Sulaiman F.A., Ibrahim N.I., Zahir M.H., Al-Ahmed A., Saidur R., et al., A review on current status and challenges of inorganic phase change materials for thermal energy storage systems, Renew. Sustain. Energy Rev., 70 (2017) 1072–1089.
  • [13] Magendran S.S., Khan F.S.A., Mubarak N.M., Vaka M., Walvekar R., Khalid M., et al., Synthesis of organic phase change materials (PCM) for energy storage applications: A review, Nano-Struct. Nano-Objects, 20 (2019) 100399.
  • [14] Dincer I., Evaluation and selection of energy storage systems for solar thermal applications, Int. J. Energy Res., 23 (1999) 1017–1028.
  • [15] Soares N., Costa J.J., Gaspar A.R., Santos P., Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency, Energy Build., 59 (2013) 82–103.
  • [16] Baetens R., Jelle B.P., Gustavsen A., Phase change materials for building applications: A state-of-the-art review, Energy Build., 42 (2010) 1361–1368.
  • [17] Milián Y.E., Gutiérrez A., Grágeda M., Ushak S., A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties, Renew. Sustain. Energy Rev., 73 (2017) 983–999.
  • [18] Wang X., Zhang Y., Xiao W., Zeng R., Zhang Q., Di H., Review on thermal performance of phase change energy storage building envelope, Chin. Sci. Bull., 54 (2009) 920–928.
  • [19] Cabeza L.F., Castell A., Barreneche C., de Gracia A., Fernández A.I., Materials used as PCM in thermal energy storage in buildings: A review, Renew. Sustain. Energy Rev., 15 (2011) 1675–1695.
  • [20] Zalba B., Marín J.M., Cabeza L.F., Mehling H., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl. Therm. Eng., 23 (2003) 251–283.
  • [21] Sharma A., Tyagi V.V., Chen C.R., Buddhi D., Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev., 13 (2009) 318–345.
  • [22] Farid M.M., Khudhair A.M., Razack S.A.K., Al-Hallaj S., A review on phase change energy storage: materials and applications, Energy Convers. Manag., 45 (2004) 1597–1615.
  • [23] Liu M., Saman W., Bruno F., Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renew. Sustain. Energy Rev., 16 (2012) 2118–2132.
  • [24] Guo X., Study on inorganic PCMs modification utilized in building environment for energy conservation, Energy Sources Part A, (2024).
  • [25] Liu L., Li J., Deng Y., Yang Z., Huang K., Zhao S., Optimal design of multi-layer structure composite containing inorganic hydrated salt phase change materials and cement: Lab-scale tests for buildings, Constr. Build. Mater., 275 (2021) 122125.
  • [26] Cui H., Zhang W., Yang H., Zou Y., Liu J., Yan J., Preparation and investigation of a prefabricated salt hydrate phase change material partition for passive solar buildings, Energy, 303 (2024) 132010.
  • [27] Nartowska E., Styś-Maniara M., Kozłowski T., The potential environmental and social influence of the inorganic salt hydrates used as a phase change material for thermal energy storage in solar installations, Int. J. Environ. Res. Public Health, 20 (2023) 1331.
  • [28] Wang Q., Wu C., Wang X., Sun S., Cui D., Pan S., et al., A review of eutectic salts as phase change energy storage materials in the context of concentrated solar power, Int. J. Heat Mass Transf., 205 (2023) 123904.
  • [29] Galazutdinova Y., Al-Hallaj S., Grágeda M., Ushak S., Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: material characterization, Int. J. Energy Res., 44 (2020) 2011–2022.
  • [30] Dai X., Ping P., Kong D., Luo X., Wang G., Ren J., et al., Experimental investigation on flexible inorganic phase change material for thermal management performance improvement of lithium-ion battery, Appl. Therm. Eng., 272 (2025) 126358.
  • [31] Galazutdinova Y., Ushak S., Farid M., Al-Hallaj S., Grágeda M., Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: Application, J. Power Sources, 491 (2021) 229624.
  • [32] Ping P., Dai X., Kong D., Zhang Y., Zhao H., Gao X., et al., Experimental study on nano-encapsulated inorganic phase change material for lithium-ion battery thermal management and thermal runaway suppression, Chem. Eng. J., 463 (2023) 142401.
  • [33] Ushak S., Gutierrez A., Barreneche C., Fernandez A.I., Grágeda M., Cabeza L.F., Reduction of the subcooling of bischofite with the use of nucleating agents, Sol. Energy Mater. Sol. Cells, 157 (2016) 1011–1018.
  • [34] Dannemand M., Johansen J.B., Furbo S., Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite, Sol. Energy Mater. Sol. Cells, 145 (2016) 287–295.
  • [35] Sun W., Zhang Y., Ling Z., Fang X., Zhang Z., Experimental investigation on the thermal performance of double-layer PCM radiant floor system containing two types of inorganic composite PCMs, Energy Build., 211 (2020) 109806.
  • [36] Zhang Y., Liu S., Yang L., Yang X., Shen Y., Han X., Experimental Study on the Strengthen Heat Transfer Performance of PCM by Active Stirring, Energies, 13 (2020) 2238.
  • [37] Mokhtarpour M., Rostami A., Shekaari H., Zarghami A., Faraji S., Novel protic ionic liquids-based phase change materials for high performance thermal energy storage systems, Sci. Rep., 13 (2023) 1–10.
  • [38] Mokhtarpour M., Rostami A., Shekaari H., Zarghami A., Faraji S., Thermal properties of novel phase change materials based on protic ionic liquids containing ethanolamines and stearic acid for efficient thermal energy storage, Phys. Chem. Chem. Phys., 26 (2024) 13839–13849.
  • [39] Mokhtarpour M., Rostami A., Shekaari H., Zarghami A., Faraji S., Protic ionic liquids mono, di, triethanolamine laurate as green phase change materials: thermal energy storage capacity and conversion to electricity, J. Therm. Anal. Calorim., 149 (2024) 7169–7177.
  • [40] Lopez-Morales J.L., Perez-Arce J., Serrano A., Dauvergne J.L., Casado N., Kottarathil A., et al., Protic dialkylammonium-based ionic liquids as promising solid-solid phase change materials for thermal energy storage: Synthesis and thermo-physical characterization, J. Energy Storage, 72 (2023) 108379.
  • [41] Faraji S., Shekaari H., Zafarani-Moattar M.T., Mokhtarpour M., Experimental studies on thermophysical properties of protic ionic liquids for thermal energy storage systems, J. Energy Storage, 54 (2022) 105251.
  • [42] Kaljusmaa L.M., Tubli D., Adamson J., Konist A., Järvik O., Thermal stability of amine and carboxylic acid based protic ionic liquids from the perspective of thermal energy storage, J. Mol. Liq., 427 (2025) 127396.
  • [43] Alkan C., Sari A., Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage, Sol. Energy, 82 (2008) 118–124.
  • [44] Lin C., Li W., Yan Y., Ke H., Liu Z., Deng L., et al., Ultrafine electrospun fiber based on ionic liquid/AlN/copolyamide composite as novel form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 223 (2021) 110953.
  • [45] Zhu J., Bai L., Chen B., Fei W., Thermodynamical properties of phase change materials based on ionic liquids, Chem. Eng. J., 147 (2009) 58–62.
  • [46] Xu C., Cheng Z., Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development, Processes, 9 (2021) 337.
  • [47] Sarı A., Biçer A., Lafçı Ö., Ceylan M., Galactitol hexa stearate and galactitol hexa palmitate as novel solid–liquid phase change materials for thermal energy storage, Sol. Energy, 85 (2011) 2061–2071.
There are 47 citations in total.

Details

Primary Language English
Subjects Chemical Thermodynamics and Energetics, Physical Chemistry (Other)
Journal Section Research Article
Authors

Derya Kahraman Döğüşcü 0000-0002-6181-5778

Hüseyin Akbaş 0000-0002-3013-9033

Submission Date July 2, 2025
Acceptance Date October 15, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 46 Issue: 4

Cite

APA Kahraman Döğüşcü, D., & Akbaş, H. (2025). Design, Synthesis, and Thermal Characterization of N,N′-Dibutyl-1,6-Hexanediammonium Based Protic Ionic Liquids for Phase Change Energy Storage Applications. Cumhuriyet Science Journal, 46(4), 780-790. https://doi.org/10.17776/csj.1733240

Editor