Research Article
BibTex RIS Cite

Year 2025, Volume: 46 Issue: 4, 720 - 734, 30.12.2025
https://doi.org/10.17776/csj.1730940

Abstract

References

  • [1] Boz B., Paylan İ.C., Kizmaz M.Z., Erkan S., Biyosensörler ve Tarım Alanında Kullanımı, Tarım Makinaları Bilimi Dergisi, 13(3) (2017) 141–148.
  • [2] Tüylek Z., Biyosensörler ve Nanoteknolojik Etkileşim, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6(62) (2017) 71–80.
  • [3] Ye Y., Ji J., Sun Z., Shen P., Sun X., Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff, TrAC - Trends in Analytical Chemistry, 122 (2020) 115718.
  • [4] Nogués M.H., Oliu S.B., Abramova N., Muñoz F.X., Bratov A., Moruno C.M., Gil F.J., Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria, Biosensors and Bioelectronics, 86 (2016) 377–385.
  • [5] Kurbanoğlu S., Erkmen C., Uslu B., Frontiers in electrochemical enzyme based biosensors for food and drug analysis, Trends in Analytical Chemistry, 124 (2020) 115809.
  • [6] Kozitsina A.N., Svalova T.S., Malysheva N.N., Okhokhonin A.V., Vidrevich M.B., Brainina K.Z., Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis, Biosensors, 8(2) (2018) 1–34.
  • [7] Wu Q., Zhang Y., Yang Q., Yuan N., Zhang W., Review of electrochemical DNA biosensors for detecting food borne pathogens, Sensors (Switzerland), 19(22) (2019) 4916.
  • [8] Kuralay F., Campuzano S., Haake D., Wang J., Highly sensitive disposable nucleic acid biosensors for direct bioelectronic detection in raw biological samples, Talanta, 85 (2011) 1330-1337.
  • [9] Xu X., Ying Y., Microbial biosensors for environmental monitoring and food analysis, Food Reviews International, 27(3) (2011) 300–329.
  • [10] Bolat G., Investigation of poly (CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan, Microchemical Journal, 159 (2020) 105426.
  • [11] Tunç S., DNA hasarı tayini için grafene dayalı elektrokimyasal biyosensörlerin hazırlanması, Master's thesis, Ordu Üniversitesi Fen Bilimleri Enstitüsü, (2017).
  • [12] Palecek E., Fojta M., Tomschik M., Wang J., Electrochemical biosensors for DNA hybridization and DNA Damage, Biosensors and Bioelectronics, 13 (1998) 621–628.
  • [13] Skoog D.A., Holler F.J., Nieman T.A., Elektroanalitik kimyaya giriş: enstrümantal analiz, Editörler: Kılıç E., Köseoğlu F., Yılmaz H., Bilim Kitap Kırtasiye, (1998) 639-673.
  • [14] Palecek E., Fojta M., Electrochemists are developing fast and easy methods for determining nucleic acid sequences and DNA damage, Analytical Chemistry, 73 (2001) 74A-83A.
  • [15] Wang A.H.J., Interactions between antitumordrugs and DNA, Nucleic Acids and Molecular Biology, Ed: Eckstein F., Lilley D.M.J., Springer-Verlag Berlin Heidelberg, 1 (1987) 52-69.
  • [16] Mikkelsen S.R., Electrochemical Biosensor for DNA sequence Detection A Review, Electroanalysis, 8 (1996) 15-19.
  • [17] Musameh M., Wang J., Merkoci A., Lin Y., Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochemistry Communications, 4 (2002) 743-746.
  • [18] Merkoçi A., Pumera M., Llopis X., Pérez B., Del Valle M., Alegret S., New materials for electrochemical sensing VI: Carbon nanotubes, TrAC - Trends in Analytical Chemistry, 24(9) (2005) 826-838.
  • [19] Levision P.R., Dennis J.W., Jones K.D., Philpott R.W., Taylor S.L., Grimm V., New approaches in the binding of DNA for clinical applications, Clinical Chemistry, 44 (1998) 2060-2061.
  • [20] McGown L.B., Joseph M.J., Pitner J.B., Vonk G.P., Linn C.P., The Nucleic acid ligand: A new tool for molecular recognition, Analytical Chemistry, 67 (1995) 663A-668A.
  • [21] Sirajuddin M., Ali S., Badshah A., Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltammetry, Journal of Photochemistry and Photobiology B: Biology, 124 (2013) 1–19.
  • [22] Singh U.C., Pattabiraman N., Langridge R., Kollman P.A., Molecular mechanical studies of d(CGTACG)2: Complex of triostin A with the middle A-T base pairs in either Hoogsteen or Watson-Crick pairing, Proceedings of the National Academy of Sciences, 83 (1986) 6402–6406.
  • [23] Erdem A., Özsöz M., Voltammetry of the anticancer drug mitoxantrone and DNA, Turkish Journal of Chemistry, 25 (2001) 469-475.
  • [24] Karadeniz H., Erdem A., Kuralay F., Jelen F., Indicator-based and indicator-free magnetic assays connected with disposable electrochemical nucleic acid sensor system, Talanta, 78 (2009) 187–192.
  • [25] Erdem A., Papakonstantinou P., Murphy H., Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes, Analytical Chemistry, 78 (2006) 6656-6659.
  • [26] Erdem A., Karadeniz H., Çalışkan A., Single-Walled Carbon Nanotubes Modified Graphite Electrodes for Electrochemical Monitoring of Nucleic Acids and Biomolecular Interactions, Electroanalysis, 21(3-5) (2009) 464-471.
  • [27] Çongur G., et al., Succinamic acid functionalized PAMAM dendrimer modified pencil graphite electrodes for voltammetric and impedimetric DNA analysis, Sensors and Actuators B: Chemical, 201 (2014) 59-64.
  • [28] Pividori M.I., Merkoçi A., Alegre S., Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods, Biosensors & Bioelectronics, 15 (2000) 291–303.
  • [29] Velusamy V., Arshak K., Yang C., Yu L., Korostynska O., Adley C., Comparison between DNA Immobilization Techniques on a Redox Polymer Matrix, American Journal of Analytical Chemistry, 2 (2011) 392-400.
  • [30] Thevenot D., Toth K., Durst R., Wilson G., Electrochemical biosensors: recommended definitions and classification, Biosensors & Bioelectronics, 16 (2001) 121–131.
  • [31] Bard A.J., Faulkner L.R., Electrochemical Methods: Fundamentals and Application 2nd ed., John Wiley and Sons, Inc., (2001) 19-20.
  • [32] Ayazlı E., Kare dalga voltametrisi ve uygulamaları, Yüksek Lisans Tezi, (2007).
  • [33] Rajapakse R.O., Korelitz B.I., Zlatanic J., Baiocco P.J., Gleim G.W., Outcome of pregnancies when fathers are treated with 6-mercaptopurine for inflammatory bowel disease, American Journal of Gastroenterology, 95 (2000) 684-688.
  • [34] Brundage D., Cancer chemotherapy and treatment, Pharmacotherapy Principles & Practice, USA: McGraw-Hill Companies, Inc., (2008) 1277-1302.
  • [35] Tülümen T., 6-Merkaptopürin ile oluşturulan deneysel hepatotoksisite ve oksidatif stres üzerine Capparis Ovata'nın koruyucu etkilerinin araştırılması, Tıpta Uzmanlık Tezi, SDÜ Tıp Fakültesi, (2011).

A Study on the Interaction Between DNA and 6-Mercaptopurine Under Acidic and Basic Conditions

Year 2025, Volume: 46 Issue: 4, 720 - 734, 30.12.2025
https://doi.org/10.17776/csj.1730940

Abstract

In this study, the interaction between double-stranded DNA (fs dsDNA) obtained from fish sperm and the anticancer drug 6-mercaptopurine (6-MP) was investigated using the square wave voltammetry (SWV) method under both acidic (pH 4.8) and basic (pH 7.4) conditions. Within the scope of the study, the optimal immobilization times and concentrations of fs dsDNA and 6-MP were determined, and the effects of different pH environments on this interaction were evaluated. Based on the measurements, fs dsDNA yielded the highest signal at 30 minutes and 30 µg/mL in basic medium, and at 20 minutes and 30 µg/mL in acidic medium. For 6-MP, the optimal interaction time was found to be 5 minutes and the optimal concentration 6 µg/mL in both environments. The obtained calibration curves showed high accuracy (R² > 0.998), and low detection limits were achieved. This study demonstrates that DNA-drug interactions can be determined precisely, selectively, and rapidly through electrochemical methods, contributing to biosensor-based diagnostics and pharmaceutical analysis.

References

  • [1] Boz B., Paylan İ.C., Kizmaz M.Z., Erkan S., Biyosensörler ve Tarım Alanında Kullanımı, Tarım Makinaları Bilimi Dergisi, 13(3) (2017) 141–148.
  • [2] Tüylek Z., Biyosensörler ve Nanoteknolojik Etkileşim, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6(62) (2017) 71–80.
  • [3] Ye Y., Ji J., Sun Z., Shen P., Sun X., Recent advances in electrochemical biosensors for antioxidant analysis in foodstuff, TrAC - Trends in Analytical Chemistry, 122 (2020) 115718.
  • [4] Nogués M.H., Oliu S.B., Abramova N., Muñoz F.X., Bratov A., Moruno C.M., Gil F.J., Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria, Biosensors and Bioelectronics, 86 (2016) 377–385.
  • [5] Kurbanoğlu S., Erkmen C., Uslu B., Frontiers in electrochemical enzyme based biosensors for food and drug analysis, Trends in Analytical Chemistry, 124 (2020) 115809.
  • [6] Kozitsina A.N., Svalova T.S., Malysheva N.N., Okhokhonin A.V., Vidrevich M.B., Brainina K.Z., Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis, Biosensors, 8(2) (2018) 1–34.
  • [7] Wu Q., Zhang Y., Yang Q., Yuan N., Zhang W., Review of electrochemical DNA biosensors for detecting food borne pathogens, Sensors (Switzerland), 19(22) (2019) 4916.
  • [8] Kuralay F., Campuzano S., Haake D., Wang J., Highly sensitive disposable nucleic acid biosensors for direct bioelectronic detection in raw biological samples, Talanta, 85 (2011) 1330-1337.
  • [9] Xu X., Ying Y., Microbial biosensors for environmental monitoring and food analysis, Food Reviews International, 27(3) (2011) 300–329.
  • [10] Bolat G., Investigation of poly (CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan, Microchemical Journal, 159 (2020) 105426.
  • [11] Tunç S., DNA hasarı tayini için grafene dayalı elektrokimyasal biyosensörlerin hazırlanması, Master's thesis, Ordu Üniversitesi Fen Bilimleri Enstitüsü, (2017).
  • [12] Palecek E., Fojta M., Tomschik M., Wang J., Electrochemical biosensors for DNA hybridization and DNA Damage, Biosensors and Bioelectronics, 13 (1998) 621–628.
  • [13] Skoog D.A., Holler F.J., Nieman T.A., Elektroanalitik kimyaya giriş: enstrümantal analiz, Editörler: Kılıç E., Köseoğlu F., Yılmaz H., Bilim Kitap Kırtasiye, (1998) 639-673.
  • [14] Palecek E., Fojta M., Electrochemists are developing fast and easy methods for determining nucleic acid sequences and DNA damage, Analytical Chemistry, 73 (2001) 74A-83A.
  • [15] Wang A.H.J., Interactions between antitumordrugs and DNA, Nucleic Acids and Molecular Biology, Ed: Eckstein F., Lilley D.M.J., Springer-Verlag Berlin Heidelberg, 1 (1987) 52-69.
  • [16] Mikkelsen S.R., Electrochemical Biosensor for DNA sequence Detection A Review, Electroanalysis, 8 (1996) 15-19.
  • [17] Musameh M., Wang J., Merkoci A., Lin Y., Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochemistry Communications, 4 (2002) 743-746.
  • [18] Merkoçi A., Pumera M., Llopis X., Pérez B., Del Valle M., Alegret S., New materials for electrochemical sensing VI: Carbon nanotubes, TrAC - Trends in Analytical Chemistry, 24(9) (2005) 826-838.
  • [19] Levision P.R., Dennis J.W., Jones K.D., Philpott R.W., Taylor S.L., Grimm V., New approaches in the binding of DNA for clinical applications, Clinical Chemistry, 44 (1998) 2060-2061.
  • [20] McGown L.B., Joseph M.J., Pitner J.B., Vonk G.P., Linn C.P., The Nucleic acid ligand: A new tool for molecular recognition, Analytical Chemistry, 67 (1995) 663A-668A.
  • [21] Sirajuddin M., Ali S., Badshah A., Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltammetry, Journal of Photochemistry and Photobiology B: Biology, 124 (2013) 1–19.
  • [22] Singh U.C., Pattabiraman N., Langridge R., Kollman P.A., Molecular mechanical studies of d(CGTACG)2: Complex of triostin A with the middle A-T base pairs in either Hoogsteen or Watson-Crick pairing, Proceedings of the National Academy of Sciences, 83 (1986) 6402–6406.
  • [23] Erdem A., Özsöz M., Voltammetry of the anticancer drug mitoxantrone and DNA, Turkish Journal of Chemistry, 25 (2001) 469-475.
  • [24] Karadeniz H., Erdem A., Kuralay F., Jelen F., Indicator-based and indicator-free magnetic assays connected with disposable electrochemical nucleic acid sensor system, Talanta, 78 (2009) 187–192.
  • [25] Erdem A., Papakonstantinou P., Murphy H., Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes, Analytical Chemistry, 78 (2006) 6656-6659.
  • [26] Erdem A., Karadeniz H., Çalışkan A., Single-Walled Carbon Nanotubes Modified Graphite Electrodes for Electrochemical Monitoring of Nucleic Acids and Biomolecular Interactions, Electroanalysis, 21(3-5) (2009) 464-471.
  • [27] Çongur G., et al., Succinamic acid functionalized PAMAM dendrimer modified pencil graphite electrodes for voltammetric and impedimetric DNA analysis, Sensors and Actuators B: Chemical, 201 (2014) 59-64.
  • [28] Pividori M.I., Merkoçi A., Alegre S., Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods, Biosensors & Bioelectronics, 15 (2000) 291–303.
  • [29] Velusamy V., Arshak K., Yang C., Yu L., Korostynska O., Adley C., Comparison between DNA Immobilization Techniques on a Redox Polymer Matrix, American Journal of Analytical Chemistry, 2 (2011) 392-400.
  • [30] Thevenot D., Toth K., Durst R., Wilson G., Electrochemical biosensors: recommended definitions and classification, Biosensors & Bioelectronics, 16 (2001) 121–131.
  • [31] Bard A.J., Faulkner L.R., Electrochemical Methods: Fundamentals and Application 2nd ed., John Wiley and Sons, Inc., (2001) 19-20.
  • [32] Ayazlı E., Kare dalga voltametrisi ve uygulamaları, Yüksek Lisans Tezi, (2007).
  • [33] Rajapakse R.O., Korelitz B.I., Zlatanic J., Baiocco P.J., Gleim G.W., Outcome of pregnancies when fathers are treated with 6-mercaptopurine for inflammatory bowel disease, American Journal of Gastroenterology, 95 (2000) 684-688.
  • [34] Brundage D., Cancer chemotherapy and treatment, Pharmacotherapy Principles & Practice, USA: McGraw-Hill Companies, Inc., (2008) 1277-1302.
  • [35] Tülümen T., 6-Merkaptopürin ile oluşturulan deneysel hepatotoksisite ve oksidatif stres üzerine Capparis Ovata'nın koruyucu etkilerinin araştırılması, Tıpta Uzmanlık Tezi, SDÜ Tıp Fakültesi, (2011).
There are 35 citations in total.

Details

Primary Language English
Subjects Analytical Biochemistry, Cancer Biology
Journal Section Research Article
Authors

Derya Kızıloluk 0000-0002-0896-6550

Dilara Keskin Yılmaz

Gültekin Gökçe 0000-0003-1676-194X

Submission Date July 10, 2025
Acceptance Date November 29, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 46 Issue: 4

Cite

APA Kızıloluk, D., Keskin Yılmaz, D., & Gökçe, G. (2025). A Study on the Interaction Between DNA and 6-Mercaptopurine Under Acidic and Basic Conditions. Cumhuriyet Science Journal, 46(4), 720-734. https://doi.org/10.17776/csj.1730940

Editor