Research Article
BibTex RIS Cite

Dynamic Rearrangement Events in the Mitogenomes of Gall Inducing Wasps, Diplolepis fructuum and Diplolepis rosae (Hymenoptera: Diplolepididae)

Year 2025, Volume: 46 Issue: 4, 672 - 680, 30.12.2025
https://doi.org/10.17776/csj.1723926

Abstract

A gall-inducing wasp Diplolepis, which causes gall-forming on wild roses, is a genus belonging to the small cynipoid family Diplolepididae, modulating host plant tissues to form galls. Here, the complete mitogenome of Diplolepis fructuum was newly sequenced and presented, while D. rosae was assembled and annotated as a third party annotation from the raw genome dataset (the GenBank accession number of CM061911) of D. rosae. The mitogenomes of these gall-inducing wasps were comparatively characterised and their phylogenetic placement among congeneric species were verified. The mitogenome of D. fructuum and D. rosae were 16,133 bp and 16,363 bp in length, with an average 84.10% AT content. The initiation codons of protein-coding genes (PCGs) were ATN-Ile/Met, with the exception of ND4L (TTG-Phe) in both of them, while termination codons were TAA, with the exception of COX2 (TAG) in both mitogenomes, and incomplete T— in ND5 and ND6 in D. fructuum mitogenome. A comparison of the inferred ancestral mitogenome indicated highly differentiated mitogenome architecture in these Diplolepis species, with a total of 11 parsimonious evolutionary steps to explain the observed gene rearrangements. These comprise six reverse transpositions, two transpositions, two inversions, and one shuffling event. The phylogeny provides robust support for the distinctiveness of Diplolepididae and supports the monophyly of each genus and Cynipidae family, while Figitidae occurs as a clade including remaining families.

Supporting Institution

TÜBİTAK

Project Number

123Z065-TÜBİTAK 1001

Thanks

We thank TÜBİTAK (The Scientific and Technological Research Council of Turkey, project number 123Z065) for providing financial support.

References

  • [1] Boore J.L., Animal mitochondrial genomes, Nucleic Acids Res., 27(8) (1999) 1767–1780.
  • [2] Cameron S.L., Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny, Annu Rev Entomol., 59(1) (2014) 95–117.
  • [3] Shorthouse J.D., Leggo J.J., Sliva M.D., Lalonde R.G., Has egg location influenced the radiation of Diplolepis (Hymenoptera: Cynipidae) gall wasps on wild roses?, Basic Appl Ecol., 6(5) (2005) 423–434.
  • [4] Stone G.N., Schönrogge K., The adaptive significance of insect gall morphology, Trends Ecol Evol., 18(10) (2003) 512–522.
  • [5] Ronquist F., Nieves-Aldrey J.L., Buffington M.L., Liu Z., Liljeblad J., Nylander J.A.A., Phylogeny, evolution and classification of gall wasps: the plot thickens, PLoS One., 10(5) (2015) e0123301.
  • [6] Harris M.O., Pitzschke A., Plants make galls to accommodate foreigners: some are friends, most are foes, New Phytologist., 225(5) (2020) 1852–1872.
  • [7] Tooker J.F., Helms A.M., Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit, J Chem Ecol., 40(7) (2014) 742–753.
  • [8] Hearn J., Gobbo E., Nieves‐Aldrey J.L., Branca A., Nicholls J.A., Koutsovoulos G., Lartillot N., Stone G.N., Ronquist F., Phylogenomic analysis of protein‐coding genes resolves complex gall wasp relationships, Syst Entomol., 49(1) (2024) 110–137.
  • [9] Shu X., Li Z., Yuan R., Tang P., Chen X., Novel gene rearrangements in the mitochondrial genomes of cynipoid wasps (Hymenoptera: Cynipoidea), Genes (Basel)., 13(5) (2022) 914.
  • [10] Su C.Y., Zhu D.H., Abe Y., Ide T., Liu Z., The complete mitochondrial genome and gene rearrangements in a gall wasp species, Dryocosmus liui (Hymenoptera: Cynipoidea: Cynipidae), PeerJ., 11 (2023) e15865.
  • [11] Aljanabi S.M., Martinez I., Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques., Nucleic Acids Res., 25(22) (1997) 4692–4693.
  • [12] Chen Y., Chen Y., Shi C., Huang Z., Zhang Y., Li S., Li Y., Ye J., Yu C., Li Z., Zhang X., Wang J., Yang H., Fang L., Chen Q., SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data, Gigascience., 7(1) (2018).
  • [13] Meng G., Li Y., Yang C., Liu S., MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization, Nucleic Acids Res., 47(11) (2019) e63.
  • [14] Donath A., Jühling F., Al-Arab M., Bernhart S.H., Reinhardt F., Stadler P.F., Middendorf M., Bernt M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res., 47(20) (2019), 10543-10552.
  • [15] Grant J.R., Stothard P., The CGView Server: a comparative genomics tool for circular genomes, Nucleic Acids Res., 36 (2008) 181–184.
  • [16] Kumar S., Stecher G., Suleski M., Sanderford M., Sharma S., Tamura K., MEGA12: Molecular Evolutionary Genetic Analysis Version 12 for Adaptive and Green Computing, Mol Biol Evol., 41(12) (2024) 1–9.
  • [17] Perna N.T., Kocher, T.D., Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes, J Mol Evol., 41 (1995) 353–358.
  • [18] Blaimer B.B., Santos B.F., Cruaud A., Gates M.W., Kula R.R., Mikó I., Rasplus J.Y., Smith D.R., Talamas E.J., Brady S.G., Buffington M.L., Key innovations and the diversification of Hymenoptera, Nat Commun., 14 (2023) 1212.
  • [19] Peters R.S., Krogmann L., Mayer C., Donath A., Gunkel S., Meusemann K., Kozlov A., Podsiadlowski L., Petersen M., Lanfear R., Diez P.A., Heraty J., Kjer K.M., Klopfstein S., Meier R., Polidori C., Schmitt T., Liu S., Zhou X., Wappler T., Rust J., Misof B., Niehuis O., Evolutionary history of the Hymenoptera, Current Biology., 27 (2017) 1–6.
  • [20] Katoh K., Standley D.M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability, Mol Biol Evol., 30(4) (2013) 772–780.
  • [21] Xiang C., Gao F., Jakovlić I., Lei H., Hu Y., Zhang H., Zou H., Wang G., Zhang D., Using PhyloSuite for molecular phylogeny and tree‐based analyses, IMeta., 2 (2023) e87.
  • [22] Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B., PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses, Mol Biol Evol., 34 (2017) 772–773.
  • [23] Swofford D.L., PAUP. Phylogenetic analysis using parsimony (and other methods), Sinauer Associates, Sunderland, Massachusetts., 2 (2002) 294–307.
  • [24] Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R., IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era, Mol Biol Evol., 37(5) (2020) 1530–1534.
  • [25] Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P., Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space, Syst Biol., 61(3) (2012) 539–542.
  • [26] Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A., Posterior summarization in Bayesian phylogenetics using Tracer 1.7, Syst Biol., 67(5) (2018) 901–904.
  • [27] Aydemir M.N., Korkmaz E.M., Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition, Int J Biol Macromol., 144 (2020) 460-472.
  • [28] Doğan Ö., Korkmaz E.M., Nearly complete mitogenome of hairy sawfly, Corynis lateralis (Brullé, 1832) (Hymenoptera: Cimbicidae): rearrangements in the IQM and ARNS1EF gene clusters, Genetica., 145(4-5) (2017) 341–350.
  • [29] Korkmaz E.M., The complete mitogenome of redheaded pine sawfly, Neodiprion lecontei (Hymenoptera: Diprionidae): duplication of trnR gene and rearrangement in the ARNS1EF gene cluster, Cumhuriyet Science Journal., 43(4) (2022) 577–583.
  • [30] Hassanin A., Léger N., Deutsch J., Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences, Syst Biol., 54 (2005) 277–298.
  • [31] Crease T.J., The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea), Gene., 233(1-2) (1999) 89–99.
  • [32] Dowton M., Austin A.D., Evolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera, Mol Biol Evol., 16 (1999) 298–309.
  • [33] Wei S.J., Shi M., Sharkey M.J., van Achterberg C., Chen X., Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects, BMC Genomics., 11 (2010) 371.
  • [34] Shao R., Dowton M., Murrell A., Barker S.C., Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects, Mol Biol Evol., 20(10) (2003) 1612–1619.
  • [35] Mao M., Austin A.D., Johnson N.F., Dowton M., Coexistence of minicircular and a highly rearranged mtDNA molecule suggests that recombination shapes mitochondrial genome organization, Mol Biol Evol., 31(3) (2014) 636–644.
  • [36] Dowton M., Campbell N.J.H., Intramitochondrial recombination – is it why some mitochondrial genes sleep around?, Trends Ecol Evol., 16(5) (2001) 269–271.
  • [37] Boore J.L., The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals, in: D. Sankoff, Nadeau J. H. (Eds). Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and the Evolution of Gene Families, The Neth.:Kluwer Academic Publishers., (2000) 133–148.
  • [38] Blaimer B.B., Gotzek D., Brady S.G., Buffington M.L., Comprehensive phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps, BMC Evol Biol., 20(1) (2020) 155.
  • [39] Buffington M.L., Brady S.G., Morita S.I., Van Noort S., Divergence estimates and early evolutionary history of Figitidae (Hymenoptera: Cynipoidea), Syst Entomol., 37(2) (2012) 287–304.
  • [40] Buffington M.L., Nylander J.A.A., Heraty J.M., The phylogeny and evolution of Figitidae (Hymenoptera: Cynipoidea), Cladistics., 23(5) (2007) 403–431.
There are 40 citations in total.

Details

Primary Language English
Subjects Genomics and Transcriptomics, Computational Ecology and Phylogenetics, Sequence Analysis, Genomics
Journal Section Research Article
Authors

Özgül Doğan 0000-0003-0182-8654

İlknur Çaça Yüksel 0009-0005-0474-5928

Project Number 123Z065-TÜBİTAK 1001
Submission Date June 21, 2025
Acceptance Date November 11, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 46 Issue: 4

Cite

APA Doğan, Ö., & Çaça Yüksel, İ. (2025). Dynamic Rearrangement Events in the Mitogenomes of Gall Inducing Wasps, Diplolepis fructuum and Diplolepis rosae (Hymenoptera: Diplolepididae). Cumhuriyet Science Journal, 46(4), 672-680. https://doi.org/10.17776/csj.1723926

Editor