Research Article
BibTex RIS Cite

Simulation Study on The Sorting of Chiral Active Brownian Colloids By Optical Barriers

Year 2025, Volume: 46 Issue: 4, 957 - 963, 30.12.2025
https://doi.org/10.17776/csj.1703812

Abstract

This study considers the dynamics of chiral active Brownian particles (CABPs) through numerical simulations conducted under the influence of an optical field. Unlike passive Brownian particles, CABPs possess a propulsion mechanism and a chiral torque that induce curved trajectories, complex motion, and out-of-equilibrium behavior. These properties make CABPs interesting for both theoretical research and potential applications in the control of active matter. In simulations, CABPs are modeled as spherical particles with a refractive index suspended in a fluid medium (water). When illuminated by an optical field, these particles experience optical forces due to the momentum transfer from the light field, which affects their motion. This interaction provides a powerful method for guiding, confining, or sorting them based on their motile characteristics. As a result, the study demonstrates that optical fields can serve as both static and dynamic barriers, significantly influencing the trajectories of particles. The findings present that optical landscapes can separate and orient CABPs based on their propulsion speed and chirality. The study emphasizes the potential of optical manipulation as a tunable technique for chiral active particles in complex environments.

References

  • [1] Ramaswamy S., The Mechanics and Statistics of Active Matter, Annual Review of Condensed Matter Physics, 1 (2010) 323–45.
  • [2] Marchetti M. C., Joanny J. F., Ramaswamy S., Liverpool T. B., Prost J., Rao M. and Simha R. A., Hydrodynamics of soft active matter, Rev. Mod. Phys., 85 (2013) 1143–89.
  • [3] Erdmann U., Ebeling W., Schimansky-Geier L. and Schweitzer F., Brownian particles far from equilibrium, Eur. Phys. J. B, 15 (2000) 105–13.
  • [4] Hagen B. ten, Teeffelen S. van and Löwen H., Brownian motion of a self-propelled particle, J. Phys.: Condens. Matter, 23 (2011) 194119.
  • [5] Basu U., Majumdar S. N., Rosso A. and Schehr G., Active Brownian motion in two dimensions, Phys. Rev. E, 98 (2018) 062121.
  • [6] Callegari A. and Volpe G., Numerical Simulations of Active Brownian Particles, Flowing Matter ed: F Toschi and M Sega (Cham: Springer International Publishing), (2019) pp 211–38.
  • [7] Volpe G., Gigan S. and Volpe G., Simulation of the active Brownian motion of a microswimmer, American Journal of Physics, 82 (2014) 659–64.
  • [8] Bechinger C., Di Leonardo R., Löwen H., Reichhardt C., Volpe G. and Volpe G., Active particles in complex and crowded environments, Rev. Mod. Phys., 88 (2016) 045006.
  • [9] Elgeti J., Winkler R. G. and Gompper G., Physics of microswimmers—single particle motion and collective behavior: a review, Rep. Prog. Phys., 78 (2015) 056601.
  • [10] Gompper G., Bechinger C., Herminghaus S., Isele-Holder R., Kaupp U. B., Löwen H., Stark H. and Winkler R. G., Microswimmers – From Single Particle Motion to Collective Behavior, Eur. Phys. J. Spec. Top., 225 (2016) 2061–4.
  • [11] Liebchen B. and Levis D., Chiral active matter, EPL, 139 (2022) 67001.
  • [12] Babič D., Schmitt C. and Bechinger C., Colloids as model systems for problems in statistical physics, Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2005) 026114.
  • [13] Sevilla F. J., Diffusion of active chiral particles, Phys. Rev. E, 94 (2016) 062120.
  • [14] Berg H. C., E. coli in Motion, New York NY: Springer, (2004).
  • [15] Tailleur J. and Cates M. E., Statistical Mechanics of Interacting Run-and-Tumble Bacteria, Phys. Rev. Lett., 100 (2008) 218103.
  • [16] Libet P. A., Yakovlev E. V., Kryuchkov N. P., Simkin I. V., Sapelkin A. V. and Yurchenko S. O., Tunable colloidal spinners: Active chirality and hydrodynamic interactions governed by rotating external electric fields, The Journal of Chemical Physics, 161 (2024) 044903.
  • [17] Reichhardt C., Libál A. and Reichhardt C. J. O., Future directions for active matter on ordered substrates, EPL, 139 (2022) 27001.
  • [18] Aristov M., Eichhorn R. and Bechinger C., Separation of chiral colloidal particles in a helical flow field, Soft Matter, 9 (2013) 2525–30.
  • [19] Reichhardt C. J. O. and Reichhardt C., Ratchet Effects in Active Matter Systems, Annu. Rev. Condens. Matter Phys. 8 (2017) 51–75. [20] Ai B-Q., Quan S., and Li. F., Spontaneous demixing of chiral active mixtures in motility-induced phase separation, New J. Phys, 25 (2023) 063025.
  • [21] Li J., Guo R. and Ai B., Spontaneous separation of attractive chiral mixtures, Phys. Rev. E, 110 (2024) 024608.
  • [22] Reichhardt C. and Reichhardt C. J. O., Pattern formation and transport for externally driven active matter on periodic substrates(a), EPL, 142 (2023) 37001.
  • [23] Bag P., Nayak S., Debnath T. and Ghosh P. K., Directed Autonomous Motion and Chiral Separation of Self-Propelled Janus Particles in Convection Roll Arrays, J. Phys. Chem. Lett., 13 (2022) 11413–8.
  • [24] Caprini L., Hernández-García E., López C. and Marini Bettolo Marconi U., A comparative study between two models of active cluster crystals, Sci Rep, 9 (2019) 16687.
  • [25] Chen A., Li G., Luo H., Chen Z., Feng H., Kuang T., An H., Han X., Xiong W. and Xiao G., Effects of detection-beam focal offset on back-focal-plane displacement detection, AIP Advances, 14 (2024) 045008.
  • [26] Nayak S., Das S., Bag P., Debnath T. and Ghosh P. K., Driven transport of active particles through arrays of symmetric obstacles, The Journal of Chemical Physics, 159 (2023) 164109.
  • [27] Mijalkov M. and Volpe G., Sorting of chiral microswimmers, Soft Matter, 9 (2013) 6376–81.
  • [28] Chen Q. and Ai B., Sorting of chiral active particles driven by rotary obstacles, The Journal of Chemical Physics, 143 (2015) 104113.
  • [29] Reichhardt C. and Reichhardt C. J. O., Dynamics and separation of circularly moving particles in asymmetrically patterned arrays, Phys. Rev. E, 88 (2013) 042306.
  • [30] Xu G., Li T-C. and Ai B., Sorting of chiral active particles by a spiral shaped obstacle, Physica A: Statistical Mechanics and its Applications, 608 (2022) 128247.
  • [31] Buttinoni I., Caprini L., Alvarez L., Schwarzendahl F. J. and Löwen H., Active colloids in harmonic optical potentials(a), EPL, 140 (2022) 27001.
  • [32] Caprini L., Löwen H. and Marconi U. M. B., Chiral active matter in external potentials, Soft Matter, 19 (2023) 6234–46.
  • [33] Buttinoni I., Volpe G., Kümmel F., Volpe G. and Bechinger C., Active Brownian motion tunable by light, J. Phys.: Condens. Matter, 24 (2012) 284129.
  • [34] Jahanshahi S., Lozano C., Liebchen B., Löwen H. and Bechinger C., Realization of a motility-trap for active particles, Commun Phys, 3 (2020) 1–11.
  • [35] Li M., Yan S., Zhang Y., Chen X. and Yao B., Optical separation and discrimination of chiral particles by vector beams with orbital angular momentum, Nanoscale Adv., 3 (2021) 6897–902.
  • [36] Volpe G., Volpe G., Gigan S., Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation, Sci Rep., 5 4 (2014) 3936.
  • [37] Mousavi S.M., Kasianiuk I., Kasyanyuk D., Velu S.K.P., Callegari A., Biancofiore L., Volpe G., Clustering of Janus particles in an optical potential driven by hydrodynamic fluxes. Soft Matter, 15 28 (2019) 5748–59.
  • [38] Sarmiento-Gómez E., Rivera-Morán J. A. and Arauz-Lara J. L., Single particle states of colloidal particles in 2D periodic potentials, Soft Matter, 14 (2018) 3684–8.
  • [39] Volpe G. and Volpe G., Simulation of a Brownian particle in an optical trap, American Journal of Physics, 81 (2013) 224–30.
  • [40] Yücel H., A simulation study on colloid diffusion under time-varying optical potentials, Journal of Applied Physics, 134 (2023) 01
There are 39 citations in total.

Details

Primary Language English
Subjects Classical and Physical Optics, Thermodynamics and Statistical Physics
Journal Section Research Article
Authors

Harun Yücel 0000-0001-9406-0220

Submission Date May 21, 2025
Acceptance Date November 4, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 46 Issue: 4

Cite

APA Yücel, H. (2025). Simulation Study on The Sorting of Chiral Active Brownian Colloids By Optical Barriers. Cumhuriyet Science Journal, 46(4), 957-963. https://doi.org/10.17776/csj.1703812

Editor