Research Article
BibTex RIS Cite

Synthesis, Characterization of a Schiff Base Ligand and Its metal complexes, Their Catalytic, Thermal and DNA Binding Features

Year 2025, Volume: 46 Issue: 4, 841 - 853, 30.12.2025
https://doi.org/10.17776/csj.1671518

Abstract

This work, first of all, reports the synthesis and structural elucidation of a schiff base ligand and its Co(II), Ni(II)and Mn(II) coordination compounds using various spectroscopic methods. Then, it moves on to the search of catalytic activity features of all the metal complexes, which were tested on the oxidation reactions of styrene and cyclohexene that are known to have a crucial importance in organic synthesis. The results of these reactions showed that the metal complexes especially the Cobalt complex was the most effective as catalyst, showing %70.3 yield for styrene oxidation and %50.1 yield for cyclohexene. Synthesized compounds were also searched for their thermal behaviour and similar fragmentations were observed only for the Cobalt and Manganese complexes of the ligand. Finally DNA binding studies were carried out on all the synthesized compounds and among them the Manganese complex showed the highest binding constant (Kb ) with 7.04.

References

  • [1] Jeevadason A. W., Murugavel K. K., Neelakantan M. A., Review, types of piperazine-based Schiff base ligands: Synthesis, X-ray structures, magnetic studies and theoretical validation, Inorganica Chimica Acta, 503 (2020) 119439.
  • [2] Wang J., Zhang X., Liu H. B., Zhang D., Nong H., Wu P., Chen P., Li D., Aggregation induced emission active fluorescent sensor for the sensitive detection of Hg2+ based on organic–inorganic hybrid mesoporous material, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 227 (2020) 117585.
  • [3] Abu-Dief A. M., Mohamed I. M. A., A review on versatile applications of transition metal complexes incorporating Schiff bases, Beni-Suef Univ. J. Basic Appl. Sci., 4 (2015) 119–133.
  • [4] Rollié S., Mangold M., Sundmacher K., Designing biological systems: systems engineering meets synthetic biology, Chem. Eng. Sci., 69 (2012) 1–29.
  • [5] Liu X., Hamon J. R., Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes, Coord. Chem. Rev., 389 (2019) 94–118.
  • [6] Marchetti F., Pettinari C., Di Nicola C., Tombesi A., Pettinari R., Coordination chemistry of pyrazolone-based ligands and applications of their metal complexes, Coordination Chemistry Reviews, 401 (2019) 213069.
  • [7] Marchetti F., Pettinari R., Pettinari C., Recent advances in acylpyrazolone metal complexes and their potential applications, Coordination Chemistry Reviews, 303 (2015) 1–31.
  • [8] Pahontu E., Julea F., Rosu T., Purcarea V., Chumakov Y., Petrenco P., Gulea A., Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones, Journal of Cellular and Molecular Medicine, 19(4) (2015) 865–878.
  • [9] Tajudeen S. S., Kannappan G., Schiff base – copper (II) complexes: Synthesis, spectral studies and anti-tubercular and antimicrobial activity, Indian Journal of Advances in Chemical Science, 4(1) (2016) 40–49.
  • [10] Bal S., Orhan B., Connolly J. D., Dığrak M., Köytepe S., Synthesis and characterization of some Schiff bases, their metal complexes and thermal, antimicrobial and catalytic features, J. Therm. Anal. Calorim., 121 (2015) 909–917.
  • [11] Erdem O., Guzel B., Synthesis, characterization and catalytic activity of chiral binaphthyl Schiff-base manganese complexes for the epoxidation of styrene, Inorganica Chimica Acta, 418 (2014) 153-156.
  • [12] Bal S., Connolly J. D., Synthesis, characterization, thermal and catalytic properties of a novel carbazole derived Azo ligand and its metal complexes, Arabian Journal of Chemistry, 10 (2017) 761–768.
  • [13] Amirnasr M., Bagheri M., Farrokhpour H., Schenk K. J., Mereiter K., Ford P. C., New Zn(II) complexes with N2S2 Schiff base ligands. Experimental and theoretical studies of the role of Zn(II) in disulfide thiolate-exchange, Polyhedron, 71 (2014) 1-7.
  • [14] Çakmak R., Ay B., Çınar E., Başaran E., Akkoç S., Boğa M., Taş E., Synthesis, spectroscopic, thermal analysis and in vitro cytotoxicity, anticholinesterase and antioxidant activities of new Co(II), Ni(II), Cu(II), Zn(II), and Ru(III) complexes of pyrazolone-based Schiff base ligand, Journal of Molecular Structure, 1292 (2023) 136225.
  • [15] Al Zoubi W., Al-Hamdani A. A. S., Ko Y. G., Schiff bases and their complexes: Recent progress in thermal analysis, Separation Science and Technology, 52(6) (2017) 1052-1069.
  • [16] de Toledo T. A., da Costa R. C., da Silva L. E., Teixeria A. M. R., Lima V. N., Sena Jr D. M., Coutinho H. D. M., Freire P. T. C., Pizani P. S., Thermal and biological properties of the Schiff base N,N′-bis(salicylidene)-1,2-phenylenediamine, a potential adjuvant to antibiotic therapy, Journal of Molecular Structure, 1115 (2016) 105-108.
  • [17] Ozkinali S., Yavuz S., Tosun T., Kose D. A., Gur M., Kocaokutgen H., Synthesis, Spectroscopic and Thermal Analysis and Investigation of Dyeing Properties of o-Hydroxy Schiff Bases and Their Metal Complexes, Journal of Molecular Structure, 40(5) (2020) 12624-12634.
  • [18] Hu Q., Li H., Wang L., Gu H., Fan C., DNA Nanotechnology-Enabled Drug Delivery Systems, Chem. Rev., 119 (2019) 6459–6506.
  • [19] Pages B. J., Ang D. L., Wright E. P., Aldrich-Wright J. R., Metal complex interactions with DNA, Dalt. Trans., 44 (2015) 3505–3526.
  • [20] Damercheli M., Dayyani D., Behzad M., Mehravi B., Shafiee Ardestani M., New salen-type manganese(III) Schiff base complexes derived from meso - 1,2-diphenyl-1,2-ethylenediamine: in vitro anticancer activity, mechanism of action, and molecular docking studies, J. Coord. Chem., 68 (2015) 1500–1513.
  • [21] da Silveira V. C., Luz J. S., Oliveira C. C., Graziani I., Ciriolo M. R., da C. Ferreira A. M., Double-strand DNA cleavage induced by oxindole-Schiff base copper(II) complexes with potential antitumor activity, J. Inorg. Biochem., 102 (2008) 1090–1103.
  • [22] Zeng Y. B., Yang N., Liu W. S., Tang N., Synthesis, characterization and DNA-binding properties of La(III) complex of chrysin, J. Inorg. Biochem., 97 (2003) 258–264.
  • [23] Kose A., Gungor O., Ballı J. N., Erkan S., Synthesis, characterization, non-linear optical and DNA binding properties of Schiff base ligand and its Cu(II) and Zn (II) complexes, Journal of Molecular Structure, 1268 (2022) 133750.
  • [24] Bal M., Kose A., Schiff bases containing 1,2,3-triazole group and phenanthroline: Synthesis, characterization, and investigation of DNA binding properties, Journal of Photochemistry & Photobiology, A: Chemistry, 448 (2024) 115320.
  • [25] Turgut E., Gungor O., Kirpik H., Kose A., Gungor S. A., Kose M., Benzimidazole ligands with allyl, propargyl or allene groups, DNA binding properties, and molecular docking studies, Applied Organometallic Chemistry, 35 (2021) e6323.
  • [26] Gungor O., Kocer F., Kose M., Cu(II) complexes of biguanidine ligands: Structural characterisation, DNA binding and antimicrobial properties, Journal of Molecular Structure, 1204 (2020) 127533.
  • [27] Finnie K. S., Bartlett J. R., Woolfrey J. L., Vibrational Spectroscopic Study of the Coordination of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania, Langmuir, 14(10) (1998) 2744-2749.
  • [28] Deacon G. B., Phillips R. J., Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination, Coordination Chemistry Reviews, 33(3) (1980) 227-250.
  • [29] Tiwari M. K., Singh A. K., Sawhney K. J. S., Analysis of stainless steel samples by energy dispersive X-ray fluorescence (EDXRF) spectrometry, Bulletin of Materials Science, 24(6) (2001) 633-638.
  • [30] Roy G. B., Synthesis and study of physico-chemical properties of a new chiral Schiff base ligand and its metal complex, Inorganica Chimica Acta, 362(6) (2009) 1709-1714.
  • [31] El-Seidy A. M. A., In Situ Room Temperature Synthesis and Characterization of Salicylaldehyde Phenylhydrazone Metal Complexes, Their Cytotoxic Activity on MCF-7 Cell Line, and Their Investigation as Antibacterial and Antifungal Agents, Inorganic and Nano-Metal Chemistry, 45(3) (2015) 437-446.
  • [32] Shennar K. A., Butcher R. J., Greenaway F. T., Co(II), Cu(II), Mn(II) and Ni(II) complexes of maleic hydrazide, Inorganica Chimica Acta, 425 (2015) 247-254.
  • [33] El-Sayed A. E. M., Al-Fulaij O. A., Elaasar A. A., El-Defrawy M. M., El-Asmy A. A., Spectroscopic characterization and biological activity of dihydrazone transition metal complexes: Crystal structure of 2, 3-butanedione bis (isonicotinylhydrazone), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135 (2015) 211-218.
  • [34] Wolfe A., Shimer Jr G. H., Meehan T., Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA, Biochemistry, 26(20) (1987) 6392-6396.
  • [35] Reinhardt C. G., Krugh T. R., A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences, Biochemistry, 17(23) (1978) 4845-4854.
  • [36] Rajesh J., Rajasekaran M., Rajagopal G., Athappan P., Analytical methods to determine the comparative DNA binding studies of curcumin–Cu (II) complexes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97 (2012) 223-230.
  • [37] Kumar N., Kaushal R., Awasthi P., Non-covalent binding studies of transition metal complexes with DNA: A review, Journal of Molecular Structure, 1288 (2023) 135751.
  • [38] Ali M. S., Muthukumaran J., Al-Lohedan H. A., Molecular interactions of ceftazidime with bovine serum albumin: Spectroscopic, molecular docking, and DFT analyses, Journal of Molecular Liquids, 313 (2020) 113490.
  • [39] Abdel-Rahman L. H., Abu-Dief A. M., Abdel-Mawgoud A. A. H., Development, structural investigation, DNA binding, antimicrobial screening and anticancer activities of two novel quari-dentate VO (II) and Mn (II) mononuclear complexes, Journal of King Saud University-Science, 31(1) (2019) 52-60.
  • [40] Afrin M., Gaurav A. K., Yang X., Pan X., Zhao Y., Li B., Tb RAP1 has an unusual duplex DNA binding activity required for its telomere localization and VSG silencing, Science Advances, 6(38) (2020) eabc4065.
  • [41] Gehlen M. H., The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 42 (2020) 100338.
  • [42] Luck G., Zimmer C., Conformational aspects and reactivity of DNA. Effects of manganese and magnesium ions on interaction with DNA, European Journal of Biochemistry, 29(3) (1972) 528-536.
  • [43] Siddiqui S., Ahmed N., Goswami M., Chakrabarty A., Chowdhury G., DNA damage by Withanone as a potential cause of liver toxicity observed for herbal products of Withania somnifera (Ashwagandha), Current Research in Toxicology, 2 (2021) 72-81.
  • [44] Yoon K. R., Ko S-O., Lee S. M., Lee H., Synthesis and characterization of carbazole derived nonlinear optical dyes, Dyes and Pigments, 75 (2007) 567-573.
  • [45] Grigoras M., Antonoaia N. C., Synthesis and characterization of some carbazolebased imine polymers, European Polymer Journal, 41 (2005) 1079-1089.
There are 45 citations in total.

Details

Primary Language English
Subjects Transition Metal Chemistry, Organometallic Chemistry, Organic Chemical Synthesis
Journal Section Research Article
Authors

Selma Bal 0000-0001-9547-8717

Submission Date July 7, 2025
Acceptance Date November 29, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 46 Issue: 4

Cite

APA Bal, S. (2025). Synthesis, Characterization of a Schiff Base Ligand and Its metal complexes, Their Catalytic, Thermal and DNA Binding Features. Cumhuriyet Science Journal, 46(4), 841-853. https://doi.org/10.17776/csj.1671518

Editor