Research Article
BibTex RIS Cite

Regression and Correlation-Based Modeling of Nonlinear Optical Response in Quantum Wells

Year 2025, Volume: 46 Issue: 4, 937 - 948, 30.12.2025
https://doi.org/10.17776/csj.1662124

Abstract

This study investigates the nonlinear optical properties of quantum wells (QWs) by analyzing the energy eigenvalues and eigenfunctions of confined electrons. The nonlinear optical rectification (NOR) coefficient was numerically calculated under various structural parameters and external fields. To establish relationships between the system’s energy eigenvalues, dipole moment matrix elements, and NOR coefficient, regression and correlation analyses were conducted using IBM SPSS Statistics. Linear, quadratic, and cubic regression models were evaluated, with the cubic model demonstrating the best fit. Model accuracy was assessed using several evaluation metrics, including coefficient of determination (R²), mean absolute percentage error (MAPE), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) values for different external factors (temperature, pressure, electric field, barrier width, and barrier thickness). The results indicate that predictive modeling of the NOR coefficient enhances experimental efficiency by reducing cost and time while providing a reliable framework for understanding the optical behavior of QWs. This study offers a data-driven approach to optimizing nonlinear optical responses, contributing to advancements in optoelectronic applications.

References

  • [1] Heinen B., Wang T. L., Sparenberg M., Weber A., Kunert B., Hader J., and Stolz W., Pushing the output powers of transversal multimode VECSELs beyond the 100 W barrier. in ISLC 2012 International Semiconductor Laser Conference. 2012.
  • [2] Karim A., Bjorlin S., Piprek J., and Bowers J. E., Long-wavelength vertical-cavity lasers and amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 6 (2000) 1244-1253.
  • [3] Alford W.J., T.D. Raymond, and A.A. Allerman, High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser. Journal of the Optical Society of America B, 19 (2002) 663-666.
  • [4] Sayraç H., Sayraç M., and Elagöz S., GaAs Alttaş Üzerine Büyütülen GaAs/GaAlAs Heteroyapılarının Yüksek Çözünürlüklü X- Işını Kırınım Yöntemi Kullanılarak Karakterizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20 (2020) 558-564.
  • [5] Liang B.W. and C.W. Tu, A kinetic model for As and P incorporation behaviors in GaAsP grown by gas‐source molecular beam epitaxy. Journal of Applied Physics, 74 (1993) 255-259.
  • [6] Tuzemen A. T., Al E. B., Sayrac H., Dakhlaoui H., Mora-Ramos M. E., and Ungan F. Effects of hydrostatic pressure, temperature, and position-dependent mass on the nonlinear optical properties of triple delta-doped GaAs quantum well. The European Physical Journal Plus, 139 (2024) 690.
  • [7] Dakhlaoui H., J.A. Vinasco, and C.A. Duque, External fields controlling the nonlinear optical properties of quantum cascade laser based on staircase-like quantum wells. Superlattices and Microstructures, 155 (2021) 106885.
  • [8] Sayrac H., Dakhlaoui H., Mora-Ramos M. E., and Ungan F., Influence of external probes on the nonlinear optical characteristics of a GaAs/AlGaAs quantum well with an anharmonic potential. Optical and Quantum Electronics, 57 (2025) 43.
  • [9] Pal S. and M. Ghosh, Tailoring nonlinear optical rectification coefficient of impurity doped quantum dots by invoking Gaussian white noise. Optical and Quantum Electronics, 48 (2016) 372.
  • [10] Sayrac H., Jaouane M., Ed-Dahmouny A., Sali A., and Ungan F., Modulation of nonlinear optical rectification, second, and third harmonic generation coefficients in n-type quadruple δ-doped GaAs quantum wells under external fields. Physica B: Condensed Matter, 690 (2024) 416252.
  • [11] Khordad R., Effects of magnetic field and geometrical size on the interband light absorption in a quantum pseudodot system. Solid State Sciences, 12 (2010) 1253-1256.
  • [12] Hien N.D., Linear and nonlinear optical properties in quantum wells. Micro and Nanostructures, 170 (2022) 207372.
  • [13] Feddi E., Assaid E., Dujardin F., Stébé B., and Diouri J., Magnetic Field Influence on the Polarisability of Donors in Quantum Crystallites. Physica Scripta, 62 (2000) 88.
  • [14] Dakhlaoui H. and M. Nefzi, Tuning the linear and nonlinear optical properties in double and triple δ− doped GaAs semiconductor: Impact of electric and magnetic fields. Superlattices and Microstructures, 136 (2019) 106292.
  • [15] El-Mahalawy A.M. and K.H. El-Safty, Classical and quantum regression analysis for the optoelectronic performance of NTCDA/p-Si UV photodiode. Optik, 246 (2021) 167793.
  • [16] Mishima T.D. and M.B. Santos, Regression Analysis for Transport Electron Scattering Caused by Structural Defects in InSb Quantum Wells: Application of Matthiessen's Formula. Japanese Journal of Applied Physics, 51 (2012) 06FE07.
  • [17] Eseanu N., Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells. Physics Letters A, 374 (2010) 1278-1285.
  • [18] Dursun Ö.O. and S. Toraman, Uzun Kısa Vadeli Bellek Yöntemi ile Havayolu Yolcu Tahmini. Journal of Aviation, 5 (2021) 241-248.
  • [19] Yerel S. and T. Ersen, Prediction of the Calorific Value of Coal Deposit Using Linear Regression Analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35 2013 976-980.
  • [20] Çıtakoğlu H. and Ö. Coşkun, Dalgacık Dönüşüm Modelli Yapay Zekâ Teknikleri Kullanılarak Orta Anadolu Bölge İstasyonlarının Yağış Tahmini. Harran Üniversitesi Mühendislik Dergisi, 6 2021 39-54.
  • [21] Chai T. and R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev., 7 (2014) 1247-1250.
  • [22] Hodson T.O., Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geosci. Model Dev., 15 (2022) 5481-5487.
There are 22 citations in total.

Details

Primary Language English
Subjects Nonlinear Optics and Spectroscopy, Lasers and Quantum Electronics
Journal Section Research Article
Authors

Muhammed Sayraç 0000-0003-4373-6897

Emre Yalçın 0000-0003-3818-6712

Submission Date March 20, 2025
Acceptance Date October 6, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 46 Issue: 4

Cite

APA Sayraç, M., & Yalçın, E. (2025). Regression and Correlation-Based Modeling of Nonlinear Optical Response in Quantum Wells. Cumhuriyet Science Journal, 46(4), 937-948. https://doi.org/10.17776/csj.1662124

Editor