Influence of the Core Pillar Height on the Bandgap Characteristics of Piezoelectric Phononic Crystals with Ring-Shaped Grooves

Furkan Kuruoğlu 1,a,*

1 Department of Physics, Faculty of Science, Istanbul University, Vezneciler 34134, Istanbul, Turkey.
*aCorresponding author

ABSTRACT

Dispersion profiles and surface acoustic wave attenuation characteristics of ring-shaped phononic crystals are investigated as a function of the core pillar height. Finite element method simulations are carried out for both band analyses and transmission spectra calculations. The results reveal that the increase at the core pillar height leads to a decrement in the local resonance band gap frequencies and the corresponding transmission peaks. The obtained dispersion profiles show that the phononic crystal bandgap also expands from 6 MHz to 11 MHz while the pillar height increases from 5 \(\mu \text{m} \) to 7 \(\mu \text{m} \). Similar characteristics are also seen in the transmission spectra for the varying core pillar heights of the ring-shaped periodic grooves. In addition, surface acoustic wave attenuation competency depends on the core pillar height. The resonant frequency of the phononic crystals can be tuned by adjusting the core pillar height.

Keywords: Surface acoustic wave, Phononic crystal, Finite element method, Phononic bandgap.

Introduction

It has always been desired to sense and manipulate biological or inorganic objects by not only harmless but also contactless methods. Using light and acoustic waves [1] is the most practical way to reach this aim. Surface acoustic waves (SAWs) have been receiving extensive attention on various research and application areas related to delay lines [2], filters [3, 4], microfluidics [5–7], gas-detection [8, 9], microfluidics [5–7], mass detection [10] and bio-detection applications [11, 12]. Due to these wide ranges of research and application areas, SAW devices have drawn significant interest in recent decades.

By the proposition of the phononic crystals (PnCs)[13], which offer acoustic band gaps depending on the periodicity and geometry of the material, the guided SAWs have also been enabled, similar to photonic crystal slabs [14–16]. Recently, a periodic array of pillars emerged as the prominent phononic crystal geometry with a considerably broad range of application areas[17–19].

Piezoelectric phononic crystals (PPnCs), periodic elastic structures composed of either extrusions or grooves on a piezoelectric substrate, have also been drawing attention in terms of both physical properties and applications. Applications of PPnCs have emerged in different fields such as waveguiding [20–22], bio and mass sensing [23–25], energy harvesting [26] and microfluidics [27]. Fundamentally, the locally resonant and/or the Bragg bandgap of PPnCs paves the way for various types of applications and the bandgap characteristics are closely related to the geometric parameters of the PPnC.

Ash et al. showed that broader SAW band gaps could be achievable by using ring-shaped metamaterials as being piezoelectric phononic crystals [28]. Also, the geometrical parameters like ring radii, pillar height and groove depth can tune the frequency range where the phononic crystal will be efficient. Because of these reasons, it is crucial to obtain the proper geometrical parameters and the effects on the acoustic bandgap for superior phononic device applications.

In this work, band profile of PPnC and SAW attenuation characteristics are simulated by means of the finite element method (FEM) for the ring-shaped groove model. Simulations are performed for various pillar heights, which differ from the groove height, while the inner and outer ring radii have fixed values.

Material and Method

FEM simulations were performed to inspect the band structures of the ring-shaped PPnCs and SAW transmission spectra as a function of the PPnC pillar height. All simulations were carried out through COMSOL Multiphysics 5.3a by employing the piezoelectricity module, which couples the elastic wave equation and relevant Maxwell’s equation (Gauss’ law) to obtain stresses and electrical potential distributions over piezoelectric materials.

For ease of comparison to the work of Ash et al. [19], a two-dimensional (2D) PPnC in the square lattice is considered. As shown in Figure 1a), the square PPnCs are modeled by fixing the groove depth \(h_{\text{grv}} \) to 6 \(\mu \text{m} \), groove top radius \(r_{\text{top}} \) to 5 \(\mu \text{m} \), pillar bottom radius \(r_{i} \) to 3 \(\mu \text{m} \), lattice constant \(a \) to 12 \(\mu \text{m} \), while the pillar height \(h_{\text{pillar}} \) is ranged from 5 \(\mu \text{m} \) to 7 \(\mu \text{m} \). The wall inclination angle \(\theta \)
is set as \(10.2^{\circ}\), which is experimentally reported for \(128^{\circ}\) Y-cut X-propagating (YX-128\(^{\circ}\)) lithium niobate (LiNbO\(_3\)) [29]. This cut is defined in COMSOL through the Euler angles \((\alpha, \beta, \gamma) = (0, 38^{\circ}, 0)\). The definition of Euler angles is more convenient than the transformation of elasticity and coupling matrices of Z-cut LiNbO\(_3\).

The eigenfrequencies are determined on the irreducible Brillouin zone (BZ) in the 1\(^{st}\) BZ and the wavevector \(\mathbf{k}\) is swept on the boundaries along the \(\Gamma \rightarrow X \rightarrow M \rightarrow \Gamma\) path for the square array. Figure 1b represents the 3D schematic of the modeled PPnC unit cell. Bloch-Floquet periodic boundary condition (PBC) is defined for both opposing sides of the unit cell and the bottom side of the unit cell was defined as a fixed constraint surface to avoid unwanted displacement effects. The piezoelectric slab height was chosen as \(h_{\text{slab}} = 200 \mu\text{m}\), a value much higher than SAW penetration depth at the frequency range of interest (around 100 MHz). According to the geometric parameters of the PPnC unit cell given in Figure 1, there is a local resonance band gap (LRBG) resulting from the resonance vibrations of the core column, which is found to be below the expected Bragg band gap [19]. Here, it is shown that the characteristics, i.e., the LRGB edge frequencies and width can be tuned by varying \(h_{\text{pillar}}\).

![Figure 1. Schematic illustration of the a) cross-sectional view of modeled unit-cell, b) 3D image of the modeled ring-shaped PPnC unit cell with wavevector path at the 1st BZ and c) the model with planar IDT pairs, PMLs and PPnC array for the transmission simulation.](image)

After the PPnC band structure is obtained for each \(h_{\text{pillar}}\) value, the corresponding transmission spectra are obtained through frequency domain FEM simulations. Here, Rayleigh-type SAWs are generated by interdigitated transducers (IDTs), which are the standard means of radio frequency (RF) SAW generation in such systems [30]. SAW transmission spectra are simulated for two facing identical IDTs and a PPnC array in between, as shown in Figure 1c). To work in a broad frequency range, chirped IDTs [31] are modeled, where the finger width ranges from 7.5 \(\mu\text{m}\) to 12.5 \(\mu\text{m}\) with a step increase of \(\Delta\omega = 0.5 \mu\text{m}\) and the number of finger pairs in each IDT is \(N = 11\). The PPnC array with 15 periodic units equally spaced from the IDT fingers lays along [10] direction. The IDT on the left in Figure 1c) is defined as the source to propagate SAW, while the right-side one is used to probe the transmitted signal through the floating potential (\(V_{\text{probe}}\)). SAW transmittance (\(S_{21}\)) is calculated from the \(S_{21} = 20 \times \log_{10}(V_{\text{probe}}/V_0)\) where \(V_0 = 50 \text{ V}\) is the RF amplitude. Perfectly matched layers (PML) [32] are placed at the edge of the model in the direction of the SAW propagation and the bottom side was defined as a low-reflecting boundary (LRB) to minimize the unwanted reflections. PBC is used on the sides parallel to the SAW propagation direction, that is only one row of the PPnC is modeled, while the infinitely-many rest images are replicates through the PBC.
Results and Discussion

The band structure of the PPnC is plotted as a function of pillar height in Figure 2. The red dashed lines show the Rayleigh SAW modes of the unperturbed bulk and the other leaky SAW dispersion lines are not presented. The grey shaded areas denote the ranges of these leaky modes, which are ruled out. Below the SAW line in Figure 2, there appear several bands due to different vibration mechanisms. The lowermost two bands correspond to bending and expansion modes of the core pillar therefore flat they are [19]. The third band, on the other hand, comprises of anti-resonant modes of the outer grooves. The orange stripes lying between the second and third bands are the LRBGs, which appear between 105.2 - 111.2 MHz for the 5 µm core pillar height and shift towards the frequencies between the 70.8-82.4 MHz while the core pillar height increases up to 7 µm. Only one LRBG appears for each case, where the Bragg bandgap frequency is estimated to be around 200 MHz, from the condition \(\alpha / \lambda = 1/2 \).

The two bands below the LRBG related to the pillar modes shift to lower frequencies by the increasing pillar height of the ring-shaped PPnC. Similar results were reported for the pillar type PPnC arrays, through both experimental and simulation results [17, 19, 33]. Besides, the gap between the dispersion lines corresponds to the localized modes of the pillar decreases with the increasing height.

![Figure 2. The band structures of the square array ring-shaped PPnCs with different pillar heights: a) 5 µm to 6 µm and b) 6 µm to 7 µm.](image)

This pillar height dependence of the local resonant frequency also paves the way for the adjustment of the frequency, likewise the previous reports for the all-pillar type PPnCs, which is defined to be located above the surface of substrate [19]. Differently from the all-pillar PPnC arrays, for the ring-shaped PPnCs, the third band at the higher frequencies can be modulated by varying the pillar height of the ring-shaped PPnCs.

![Figure 4. SAW transmission spectra of ring-shaped square PPnC array on the [10] orientation for different pillar heights](image)
A drastic increment is also observed in the SAW attenuation (transmission loss) for $h_{\text{pillar}} > h_{\text{grv}}$ in both major and minor peaks, as shown in Figure 5. For $h_{\text{pillar}} \geq 6.25 \mu m$, however, transmission loss shows a decreasing profile with the increment of the pillar height of the PPnC, Figure 5(b).

Figure 6 visualizes the potential distribution over the simulated model at the major peak frequencies corresponding to different h_{pillar} values extracted from the SAW transmission spectra in Figure 4. It can be clearly seen in Figure 6 that PPnC arrays with lower height pillars ($h_{\text{pillar}} < h_{\text{grv}}$) have no superior attenuation performance. In good agreement with the results in Figure 4, the PPnC arrays that have pillars with $h_{\text{pillar}} \geq h_{\text{grv}}$, exhibit better attenuation characteristics according to the more pronounced darker regions in Figure 6a and the voltage distributions in the Figure 6b.

Conclusion

In summary, the band structures and the SAW transmission spectra of PPnCs with ring-shaped grooves are simulated as a function of core pillar height. It is observed that the increment in the pillar height of the ring-shaped PPnC leads to a decrease in the LRBG edge frequencies while the width of LRBG is increasing. Agreeing results are obtained from the SAW transmission peaks and the voltage distribution on the probe IDT, which tend to show decreasing attenuation profile with the increasing pillar height. The potential distributions also show the ring-shaped PPnCs with $h_{\text{pillar}} \geq 6 \mu m$ have better attenuation performance. Taking into account all of these findings from the simulations, the frequencies at which the ring-shaped PPnCs are functional can be utilized to tune surface acoustic wave attenuation by adjusting the pillar height of the model. Increasing pillar height is equivalent to adding extra load on the pillars. Thus, the investigated PPnC can be employed in sensing applications through the mass loading effect.

Acknowledgment

I appreciate support from Prof. Dr. Ahmet Cicek and Prof. Dr. Ayse Erol for their valuable discussion on the results. The work is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: 120F337).

Conflicts of interest

The author states that did not have a conflict of interests.

References

