Araştırma Makalesi
BibTex RIS Kaynak Göster

ANALYSIS OF TiFe INTERMETALLIC COMPOUND BY DFT

Yıl 2023, Sayı: 053, 118 - 130, 30.06.2023
https://doi.org/10.59313/jsr-a.1214411

Öz

The structural, mechanical, anisotropy, and optical properties of the TiFe compound, which is the effective hydrogen storage material, were analyzed using the DFT method with the CASTEP program. The elastic constants of the cubic system, which have been determined by the stress-strain method, are stable according to the Born stability criteria. According to the mechanical properties, the compound was brittle and hard. Anisotropy properties were examined in 2D and 3D with the EIAM code. Finally, the optical properties using the complex dielectric function based on the electronic structure of TiFe; parameters such as dielectric constants, reflectivity, extinction coefficient, refractive index, and loss function were examined in the range of 0-50 eV. Generally, our obtained results are comparable with literature values.

Teşekkür

The authors declare that they have no conflict of interest.

Kaynakça

  • [1] Niaz, S., Manzoor, T., Pandith, A.H. (2015). Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 50, 457-469.
  • [2] Nazir, G., Tariq, S., Mahmood, Q., Saad, S., Mahmood, A., Tariq, S. (2018). Under Pressure DFT Investigations on Optical and Electronic Properties of Under Pressure DFT Investigations on Optical and Electronic Properties of PbZrO 3. Acta Physica Polonica A, 133, 105-113.
  • [3] Vezirolu, T.N., Barbir, F. (1992). Hydrogen: the wonder fuel. International Journal of Hydrogen Energy, 17(6), 391-404.
  • [4] Andreas, Z. (2004). Hydrogen storage methods. Published online, 91, 157-172.
  • [5] Graetz, J. (2009). New approaches to hydrogen storage. Chemical Society Reviews, 38(1), 73-82.
  • [6] Collins, D.J., Zhou, H.C. (2007). Hydrogen storage in metal – organic frameworks. Journal of Materials Chemistry, 17(30), 3154-3160.
  • [7] Long, J.R., Murray, L.J., Dinca, M. (2009). Hydrogen storage in metal – organic frameworks. Chemical Society Reviews, 38(5), 1294-1314.
  • [8] Kaneno, Y., Takasugi, T. (2003). Effects of microstructure and environment on room-temperature tensile properties of B2-type polycrystalline CoTi intermetallic compound. Journal of materials science, 38, 869-876.
  • [9] Guo, Q., Kleppa, O.J. (1998). Standard enthalpies of formation of some alloys formed between group IV elements and group VIII elements, determined by high-temperature direct synthesis calorimetry II. Alloys of (Ti, Zr, Hf) with (Co, Ni). Journal of Alloys and Compounds, 269, 181-186.
  • [10] Pawar, H., Shugani, M., Aynyas, M., Sanyal, S.P. (2019). Electronic structural, lattice dynamics and superconducting properties of tife intermetallic compound: A first-principles study. AIP Conference Proceedings, 2115, 030336.
  • [11] Edalati, K., Matsuda, J., Arita, M., Daio, T., Akiba, E., Horita, Z. (2013). Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Applied Physics Letters, 103, 143902.
  • [12] Ko, W.S., Park, K.B., Park, H.K. (2021). Density functional theory study on the role of ternary alloying elements in TiFe-based hydrogen storage alloys. Journal of Materials Science & Technology, 92, 148-158.
  • [13] Ćirić, K.D., Kocjan, A., Gradišek, A., Koteski, V.J., Kalijadis, A.M., Ivanovski, V.N., Laušević, Z.V., Stojić, D.L. (2012). A study on crystal structure, bonding and hydriding properties of Ti–Fe–Ni intermetallics – Behind substitution of iron by nickel. İnternational journal of hydrogen energy, 37, 8408-8417.
  • [14 ] Fadonougbo, J.O., Park, K.B., Na, T.W., Park, C.S., Park, H.K., Ko, W.S. (2022). An integrated computational and experimental method for predicting hydrogen plateau pressures of TiFe1-xMx-based room temperature hydrides. İnternational journal of hydrogen energy, 47, 17673-17682.
  • [15] Sujan, G.K., Pan, Z., Li, H., Liang, D., Alam, N. (2019). An overview on TiFe intermetallic for solid-state hydrogen storage: microstructure, hydrogenation and fabrication processes. Critical Reviews in Solid State and Materials Sciences, 45(5), 410-427.
  • [16] Kong, Z., Duan, Y., Peng, M., Qu, D., Bao, L. (2019). Theoretical predictions of thermodynamic and electronic properties of TiM (M= Fe, Ru and Os). Physica B: Condensed Matter, 573, 13-21.
  • [17] Bakulin, A.V., Kulkov, A.S., Kulkova, S.E. (2023). Impurity influence on the hydrogen diffusivity in B2-TiFe. İnternational journal of hydrogen energy, 48, 232-242.
  • [18] Edalati, K., Matsuo, M., Emami, H., Itano, S., Alhamidi, A., Staykov, A., Smith, D.J., Orimo, S-i., Akiba, E., Horita, Z. (2016). Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics. Scripta Materialia, 124, 108-111.
  • [19] Oliveira, V.B., Beatrice, C.A.G., Leal Neto, R.M., Silva, W.B., Pessan, L.A., Botta, W.J., Leiva, D.R. (2021). Hydrogen absorption/desorption behavior of a cold-rolled tife intermetallic compound. Materials Research, 24(6), 2021-0204.
  • [20] Dematteis, E.M., Cuevas, F., Latroche, M. (2020). Hydrogen storage properties of Mn and Cu for Fe substitution in TiFe0. 9 intermetallic compound. Journal of Alloys and Compounds, 851, 156075.
  • [21] Du, L.Y., Wang, L., Zhai W., Hu, L., Liu, J.M., Wei, B. (2018). Liquid state property, structural evolution and mechanical behavior of TiFe alloy solidified under electrostatic levitation condition. Materials and Design, 160, 48-57.
  • [22] Yang, T., Wang, P., Xia, C., Liu, N., Liang, C., Yin, F., Li, Q. (2020). Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy. International Journal of Hydrogen Energy, 45, 12071-12081.
  • [23] Mehmood, N., Ahmad, R., Murtaza, G. (2017). Ab Initio Investigations of Structural, Elastic, Mechanical, Electronic, Magnetic, and Optical Properties of Half-Heusler Compounds RhCrZ (Z = Si, Ge). Journal of Superconductivity and Novel Magnetism, 30(9), 2481-2488.
  • [24] Kresse, G., Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558-561.
  • [25] Le Page, Y., Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Physical Review B - Condensed Matter and Materials Physics, 65(10), 1-14.
  • [26] Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B, 46(11), 6671-6687.
  • [27] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B, 41(11), 7892-7895.
  • [28] Mehl, M.J., Osburn, J.E., Papaconstantopoulos, D.A., Klein, B.M. (1990). Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Physical Review B, 41(15), 10311-10323.
  • [29] Marmier, A., Lethbridge, Z.A.D., Walton, R.I., Smith, C.W., Parker, S.C., Evans, K.E. (2010). ElAM : A computer program for the analysis and representation of anisotropic elastic properties. Computer Physics Communications, 181(12), 2102-2115.
  • [30] Murnaghan, F.D. (1944). The compressibility of media under extreme pressure. Proceedings of the National Academy of Sciences. 30(9), 244-247.
  • [31] Melnyk, G., Tremel, W. (2003). The titanium–iron–antimony ternary system and the crystal and electronic structure of the interstitial compound Ti5FeSb2. Journal of alloys and compounds, 349(1-2), 164-171.
  • [32] Duwez, P., Taylor, J. (1950). The structure of intermediate phases in alloys of titanium with iron, cobalt, and nickel. Journal of Metals, 188, 1173-1176.
  • [33] Fischer, P., Hälg, W., Schlapbach, L., Stucki, F., Andresen, A.F. (1978). Deuterium storage in FeTi. Measurement of desorption isotherms and structural studies by means of neutron diffraction. Materials Research Bulletin, 13(9), 931-946.
  • [34] Mouhat, F., Coudert, F.X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B - Condensed Matter and Materials Physics, 90(22), 1-4.
  • [35] Kars Durukan, I., Oztekin Ciftci, Y. (2020). First-principles calculations of vibrational and optical properties of half-Heusler NaScSi. Indian Journal of Physics, Published online, 95, 2303-2312.
  • [36] Acharya, N., Fatima, B., Chouhan, S.S., Sanyal, S.P. (2013). First Principles Study on Structural , Electronic , Elastic and Thermal Properties of Equiatomic MTi ( M = Fe , Co , Ni ). Chemistry and Materials Research, 3, 22-30.
  • [37] Jain, E., Pagare, G., Chouhan, S.S., Sanyal, S.P. (2014). Electronic structure, phase stability and elastic properties of ruthenium based four intermetallic compounds: Ab-initio study. Intermetallics, 54, 79-85.
  • [38] Liu, Z.T.Y., Gall, D., Khare, S.V. (2014). Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides. Physical review B, 90(13), 134102.
  • [39] Anissa, B., Radouan, D., Durukan I.K. (2022). Study of structural, electronic, elastic, optical and thermoelectric properties of half ‑ Heusler compound RbScSn : A TB ‑ mBJ DFT study. Optical and Quantum Electronics, 54(6), 1-17.
Yıl 2023, Sayı: 053, 118 - 130, 30.06.2023
https://doi.org/10.59313/jsr-a.1214411

Öz

Kaynakça

  • [1] Niaz, S., Manzoor, T., Pandith, A.H. (2015). Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 50, 457-469.
  • [2] Nazir, G., Tariq, S., Mahmood, Q., Saad, S., Mahmood, A., Tariq, S. (2018). Under Pressure DFT Investigations on Optical and Electronic Properties of Under Pressure DFT Investigations on Optical and Electronic Properties of PbZrO 3. Acta Physica Polonica A, 133, 105-113.
  • [3] Vezirolu, T.N., Barbir, F. (1992). Hydrogen: the wonder fuel. International Journal of Hydrogen Energy, 17(6), 391-404.
  • [4] Andreas, Z. (2004). Hydrogen storage methods. Published online, 91, 157-172.
  • [5] Graetz, J. (2009). New approaches to hydrogen storage. Chemical Society Reviews, 38(1), 73-82.
  • [6] Collins, D.J., Zhou, H.C. (2007). Hydrogen storage in metal – organic frameworks. Journal of Materials Chemistry, 17(30), 3154-3160.
  • [7] Long, J.R., Murray, L.J., Dinca, M. (2009). Hydrogen storage in metal – organic frameworks. Chemical Society Reviews, 38(5), 1294-1314.
  • [8] Kaneno, Y., Takasugi, T. (2003). Effects of microstructure and environment on room-temperature tensile properties of B2-type polycrystalline CoTi intermetallic compound. Journal of materials science, 38, 869-876.
  • [9] Guo, Q., Kleppa, O.J. (1998). Standard enthalpies of formation of some alloys formed between group IV elements and group VIII elements, determined by high-temperature direct synthesis calorimetry II. Alloys of (Ti, Zr, Hf) with (Co, Ni). Journal of Alloys and Compounds, 269, 181-186.
  • [10] Pawar, H., Shugani, M., Aynyas, M., Sanyal, S.P. (2019). Electronic structural, lattice dynamics and superconducting properties of tife intermetallic compound: A first-principles study. AIP Conference Proceedings, 2115, 030336.
  • [11] Edalati, K., Matsuda, J., Arita, M., Daio, T., Akiba, E., Horita, Z. (2013). Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Applied Physics Letters, 103, 143902.
  • [12] Ko, W.S., Park, K.B., Park, H.K. (2021). Density functional theory study on the role of ternary alloying elements in TiFe-based hydrogen storage alloys. Journal of Materials Science & Technology, 92, 148-158.
  • [13] Ćirić, K.D., Kocjan, A., Gradišek, A., Koteski, V.J., Kalijadis, A.M., Ivanovski, V.N., Laušević, Z.V., Stojić, D.L. (2012). A study on crystal structure, bonding and hydriding properties of Ti–Fe–Ni intermetallics – Behind substitution of iron by nickel. İnternational journal of hydrogen energy, 37, 8408-8417.
  • [14 ] Fadonougbo, J.O., Park, K.B., Na, T.W., Park, C.S., Park, H.K., Ko, W.S. (2022). An integrated computational and experimental method for predicting hydrogen plateau pressures of TiFe1-xMx-based room temperature hydrides. İnternational journal of hydrogen energy, 47, 17673-17682.
  • [15] Sujan, G.K., Pan, Z., Li, H., Liang, D., Alam, N. (2019). An overview on TiFe intermetallic for solid-state hydrogen storage: microstructure, hydrogenation and fabrication processes. Critical Reviews in Solid State and Materials Sciences, 45(5), 410-427.
  • [16] Kong, Z., Duan, Y., Peng, M., Qu, D., Bao, L. (2019). Theoretical predictions of thermodynamic and electronic properties of TiM (M= Fe, Ru and Os). Physica B: Condensed Matter, 573, 13-21.
  • [17] Bakulin, A.V., Kulkov, A.S., Kulkova, S.E. (2023). Impurity influence on the hydrogen diffusivity in B2-TiFe. İnternational journal of hydrogen energy, 48, 232-242.
  • [18] Edalati, K., Matsuo, M., Emami, H., Itano, S., Alhamidi, A., Staykov, A., Smith, D.J., Orimo, S-i., Akiba, E., Horita, Z. (2016). Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics. Scripta Materialia, 124, 108-111.
  • [19] Oliveira, V.B., Beatrice, C.A.G., Leal Neto, R.M., Silva, W.B., Pessan, L.A., Botta, W.J., Leiva, D.R. (2021). Hydrogen absorption/desorption behavior of a cold-rolled tife intermetallic compound. Materials Research, 24(6), 2021-0204.
  • [20] Dematteis, E.M., Cuevas, F., Latroche, M. (2020). Hydrogen storage properties of Mn and Cu for Fe substitution in TiFe0. 9 intermetallic compound. Journal of Alloys and Compounds, 851, 156075.
  • [21] Du, L.Y., Wang, L., Zhai W., Hu, L., Liu, J.M., Wei, B. (2018). Liquid state property, structural evolution and mechanical behavior of TiFe alloy solidified under electrostatic levitation condition. Materials and Design, 160, 48-57.
  • [22] Yang, T., Wang, P., Xia, C., Liu, N., Liang, C., Yin, F., Li, Q. (2020). Effect of chromium, manganese and yttrium on microstructure and hydrogen storage properties of TiFe-based alloy. International Journal of Hydrogen Energy, 45, 12071-12081.
  • [23] Mehmood, N., Ahmad, R., Murtaza, G. (2017). Ab Initio Investigations of Structural, Elastic, Mechanical, Electronic, Magnetic, and Optical Properties of Half-Heusler Compounds RhCrZ (Z = Si, Ge). Journal of Superconductivity and Novel Magnetism, 30(9), 2481-2488.
  • [24] Kresse, G., Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558-561.
  • [25] Le Page, Y., Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Physical Review B - Condensed Matter and Materials Physics, 65(10), 1-14.
  • [26] Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B, 46(11), 6671-6687.
  • [27] Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical review B, 41(11), 7892-7895.
  • [28] Mehl, M.J., Osburn, J.E., Papaconstantopoulos, D.A., Klein, B.M. (1990). Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Physical Review B, 41(15), 10311-10323.
  • [29] Marmier, A., Lethbridge, Z.A.D., Walton, R.I., Smith, C.W., Parker, S.C., Evans, K.E. (2010). ElAM : A computer program for the analysis and representation of anisotropic elastic properties. Computer Physics Communications, 181(12), 2102-2115.
  • [30] Murnaghan, F.D. (1944). The compressibility of media under extreme pressure. Proceedings of the National Academy of Sciences. 30(9), 244-247.
  • [31] Melnyk, G., Tremel, W. (2003). The titanium–iron–antimony ternary system and the crystal and electronic structure of the interstitial compound Ti5FeSb2. Journal of alloys and compounds, 349(1-2), 164-171.
  • [32] Duwez, P., Taylor, J. (1950). The structure of intermediate phases in alloys of titanium with iron, cobalt, and nickel. Journal of Metals, 188, 1173-1176.
  • [33] Fischer, P., Hälg, W., Schlapbach, L., Stucki, F., Andresen, A.F. (1978). Deuterium storage in FeTi. Measurement of desorption isotherms and structural studies by means of neutron diffraction. Materials Research Bulletin, 13(9), 931-946.
  • [34] Mouhat, F., Coudert, F.X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B - Condensed Matter and Materials Physics, 90(22), 1-4.
  • [35] Kars Durukan, I., Oztekin Ciftci, Y. (2020). First-principles calculations of vibrational and optical properties of half-Heusler NaScSi. Indian Journal of Physics, Published online, 95, 2303-2312.
  • [36] Acharya, N., Fatima, B., Chouhan, S.S., Sanyal, S.P. (2013). First Principles Study on Structural , Electronic , Elastic and Thermal Properties of Equiatomic MTi ( M = Fe , Co , Ni ). Chemistry and Materials Research, 3, 22-30.
  • [37] Jain, E., Pagare, G., Chouhan, S.S., Sanyal, S.P. (2014). Electronic structure, phase stability and elastic properties of ruthenium based four intermetallic compounds: Ab-initio study. Intermetallics, 54, 79-85.
  • [38] Liu, Z.T.Y., Gall, D., Khare, S.V. (2014). Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides. Physical review B, 90(13), 134102.
  • [39] Anissa, B., Radouan, D., Durukan I.K. (2022). Study of structural, electronic, elastic, optical and thermoelectric properties of half ‑ Heusler compound RbScSn : A TB ‑ mBJ DFT study. Optical and Quantum Electronics, 54(6), 1-17.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Emre Taş 0000-0003-2527-9434

İlknur Kars Durukan 0000-0001-5697-0530

Yasemin Çiftci 0000-0003-1796-0270

Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 4 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Sayı: 053

Kaynak Göster

IEEE E. Taş, İ. Kars Durukan, ve Y. Çiftci, “ANALYSIS OF TiFe INTERMETALLIC COMPOUND BY DFT”, JSR-A, sy. 053, ss. 118–130, Haziran 2023, doi: 10.59313/jsr-a.1214411.