Araştırma Makalesi
BibTex RIS Kaynak Göster

Removal of Pb2+ ions from aqueous medium by using chitosan-diatomite composite: equilibrium, kinetic and thermodynamic studies

Yıl 2020, Cilt: 7 Sayı: 1, 307 - 318, 15.02.2020
https://doi.org/10.18596/jotcsa.634590

Öz

Abstract: In
this study, a novel, low-cost, natural, and highly effective
adsorbent, chitosan (Ch) -diatomite (D) composite was synthesized.
Ch-D composite
was tested as
an effective and alternative adsorbent for the removal of Pb
2+
ions.
The Ch-D composite
was characterized by FT-IR, SEM-EDX and PZC analyses. The

adsorption process
of Pb
2+
ions onto Ch-D as initial lead concentration, s
olution
pH,
temperature,
contact time and
recovery
was
investigated
. From
the adsorption process results, it has been observed that the highest
removal efficiency is approximately 95% at a contact time of 4-hour,
initial
Pb2+
concentration
of 500 mg L
-1
and agitation speed of 150 rpm at natural pH 4.0.

The maximum Pb2+
adsorption
capacity from the Langmuir model was f
ound
as
0.154
mol kg
-1
at 25
oC.
Besides,
adsorption kinetics was also explained with pseudo-first-order
models.
Adsorption
thermodynamics have shown that Pb
2+
adsorption onto Ch-D is possible, spontaneous and exothermic. Ch-D
composite can become an alternative adsorbent for the treatment of
lead ions in the wastewater.



Destekleyen Kurum

Sivas Cumhuriyet Üniversitesi

Proje Numarası

ZARA004

Teşekkür

The present study (Project no: ZARA004) was supported by the Cumhuriyet University Scientific Research Projects Commission. The authors strongly declare that no scientific and/or financial conflicts of interest, exists with other people or institutions.

Kaynakça

  • 1. Paulino AT, Minasse FAS, Guilherme MR, Reis AV, Muniz EC, Nozaki J. Novel adsorbent based on silk worm chrysalides for removal of heavy metals from wastewaters. Journal of colloid and interface science 2006;301(2):479-87.
  • 2. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of environmental management. 2011;92(3):407-18.
  • 3. Benito Y, Ruiz ML. Reverse osmosis applied to metal finishing wastewater. Desalination. 2002; 142(3):229-34.
  • 4. Al-Degs Y, Khraisheh MAM, Tutunji MF. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Research. 2001;35(15):3724-8.
  • 5. Deng L, Du P, Yu W, Yuan P, Annabi-Bergaya F, Liu D, Zhou J. Novel hierarchically porous allophane/diatomite nanocomposite for benzene adsorption. Applied Clay Science. 2019;168:155-63.
  • 6. Senol ZM, Arslan DS, Simşek S. Preparation and characterization of a novel diatomite-based composite and investigation of its adsorption properties for uranyl ions. Journal of Radioanalytical and Nuclear Chemistry. 2019;321(3):791-803.
  • 7. Vakili M, Deng S, Liu D, Li T, Yu, G. Preparation of aminated cross-linked chitosan beads for efficient adsorption of hexavalent chromium. International journal of biological macromolecules. 2019;139:352-60.
  • 8. Fan L, Luo C, Sun M, Li X, Qiu H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites, Colloids and Surfaces B: Biointerfaces. 2013;103:523-9.
  • 9. Senol ZM. Kitosan-Vermikülit Kompoziti Kullanılarak Sulu Çözeltiden Etkin Kurşun Giderimi: Denge, Kinetik ve Termodinamik Çalışmalar, Academic Platform Journal of Engineering and Science. 2020;8(1):15-21.
  • 10. Sun X, Peng B, Ji Y, Chen J, Li D. Chitosan(chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption.  AIChE Journal. 2009;55(8):2062–2069.
  • 11. Gupta N, Kushwaha AK, Chattopadhyaya MC. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2012;43(1):125-31.
  • 12. Tirtom VN, Dinçer A, Becerik S, Aydemir T, Çeli A. Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chemical Engineering Journal, 2012;197:379-86.
  • 13. Senol ZM, Gül ÜD, Şimşek S. Assessment of Pb2+ removal capacity of lichen (Evernia prunastri): application of adsorption kinetic, isotherm models. and thermodynamics. Environmental Science and Pollution Research. 2019;26(26):27002-13.
  • 14. Langmuir J. The adsorption of gases on plane surfaces of glass, mica and platinum I. Journal of the American Chemical Society. 1918;40:1361-1403.
  • 15. Helfferich F. Ion exchange. McGraw Hill. New York. 1962;166.
  • 16. Dubinin MM. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chemical Reviews. 1960; 60:235–66.
  • 17. Hobson JP. Physical adsorption isotherms extending from ultra-high vacuum to vapor pressure. The Journal of physical chemistry. 1969;73:2720–7.
  • 18. Cui X, Hao H, Zhang C, He Z, Yang X. Science of the total environment capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of the Total Environment. 2016;539:566–75.
  • 19. Inyang M, Gao B, Ding W, Pullammanappallil P, Zimmerman AR, Cao X. Enhanced Lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology. 2011;46:1950–6.
  • 20. Sharma P, Tomar R. Synthesis and application of an analogue of mesolite for the removal of uranium (VI), thorium (IV), and europium (III) from aqueous waste. Microporous and Mesoporous Materials, 2008;116 (1-3):641-52.
  • 21. Sheng G, Hu J, Wang X. Sorption properties of Th (IV) on the raw diatomite—effects of contact time, pH, ionic strength and temperature. Applied Radiation and Isotopes, 2008; 66(10):1313-20.
  • 22. Khraisheh MA, Al-degs YS, Mcminn WA. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal. 2004;99(2):177-84.
  • 23. Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica açta. 2003;396(1-2):153-66.
  • 24. Sprynskyy M, Kovalchuk I, Buszewski B. The separation of uranium ions by natural and modified diatomite from aqueous solution. Journal of Hazardous Materials. 2010; 181(1-3):700-7.
  • 25. Čerović LS, Milonjić SK, Todorovi, MB, Trtanj MI, Pogozhev YS, Blagoveschenskii Y, Levashov EA. Point of zero charge of different carbides. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;297(1-3):1-6.
  • 26. Ngah WW, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites: A review.  Carbohydrate Polymers, 2011;83(4):1446–56.
  • 27. Ska DK. Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chemical Engineering Journal, 2011;173:520-9.
Yıl 2020, Cilt: 7 Sayı: 1, 307 - 318, 15.02.2020
https://doi.org/10.18596/jotcsa.634590

Öz

Proje Numarası

ZARA004

Kaynakça

  • 1. Paulino AT, Minasse FAS, Guilherme MR, Reis AV, Muniz EC, Nozaki J. Novel adsorbent based on silk worm chrysalides for removal of heavy metals from wastewaters. Journal of colloid and interface science 2006;301(2):479-87.
  • 2. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of environmental management. 2011;92(3):407-18.
  • 3. Benito Y, Ruiz ML. Reverse osmosis applied to metal finishing wastewater. Desalination. 2002; 142(3):229-34.
  • 4. Al-Degs Y, Khraisheh MAM, Tutunji MF. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Research. 2001;35(15):3724-8.
  • 5. Deng L, Du P, Yu W, Yuan P, Annabi-Bergaya F, Liu D, Zhou J. Novel hierarchically porous allophane/diatomite nanocomposite for benzene adsorption. Applied Clay Science. 2019;168:155-63.
  • 6. Senol ZM, Arslan DS, Simşek S. Preparation and characterization of a novel diatomite-based composite and investigation of its adsorption properties for uranyl ions. Journal of Radioanalytical and Nuclear Chemistry. 2019;321(3):791-803.
  • 7. Vakili M, Deng S, Liu D, Li T, Yu, G. Preparation of aminated cross-linked chitosan beads for efficient adsorption of hexavalent chromium. International journal of biological macromolecules. 2019;139:352-60.
  • 8. Fan L, Luo C, Sun M, Li X, Qiu H. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites, Colloids and Surfaces B: Biointerfaces. 2013;103:523-9.
  • 9. Senol ZM. Kitosan-Vermikülit Kompoziti Kullanılarak Sulu Çözeltiden Etkin Kurşun Giderimi: Denge, Kinetik ve Termodinamik Çalışmalar, Academic Platform Journal of Engineering and Science. 2020;8(1):15-21.
  • 10. Sun X, Peng B, Ji Y, Chen J, Li D. Chitosan(chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption.  AIChE Journal. 2009;55(8):2062–2069.
  • 11. Gupta N, Kushwaha AK, Chattopadhyaya MC. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2012;43(1):125-31.
  • 12. Tirtom VN, Dinçer A, Becerik S, Aydemir T, Çeli A. Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chemical Engineering Journal, 2012;197:379-86.
  • 13. Senol ZM, Gül ÜD, Şimşek S. Assessment of Pb2+ removal capacity of lichen (Evernia prunastri): application of adsorption kinetic, isotherm models. and thermodynamics. Environmental Science and Pollution Research. 2019;26(26):27002-13.
  • 14. Langmuir J. The adsorption of gases on plane surfaces of glass, mica and platinum I. Journal of the American Chemical Society. 1918;40:1361-1403.
  • 15. Helfferich F. Ion exchange. McGraw Hill. New York. 1962;166.
  • 16. Dubinin MM. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chemical Reviews. 1960; 60:235–66.
  • 17. Hobson JP. Physical adsorption isotherms extending from ultra-high vacuum to vapor pressure. The Journal of physical chemistry. 1969;73:2720–7.
  • 18. Cui X, Hao H, Zhang C, He Z, Yang X. Science of the total environment capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of the Total Environment. 2016;539:566–75.
  • 19. Inyang M, Gao B, Ding W, Pullammanappallil P, Zimmerman AR, Cao X. Enhanced Lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology. 2011;46:1950–6.
  • 20. Sharma P, Tomar R. Synthesis and application of an analogue of mesolite for the removal of uranium (VI), thorium (IV), and europium (III) from aqueous waste. Microporous and Mesoporous Materials, 2008;116 (1-3):641-52.
  • 21. Sheng G, Hu J, Wang X. Sorption properties of Th (IV) on the raw diatomite—effects of contact time, pH, ionic strength and temperature. Applied Radiation and Isotopes, 2008; 66(10):1313-20.
  • 22. Khraisheh MA, Al-degs YS, Mcminn WA. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal. 2004;99(2):177-84.
  • 23. Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica açta. 2003;396(1-2):153-66.
  • 24. Sprynskyy M, Kovalchuk I, Buszewski B. The separation of uranium ions by natural and modified diatomite from aqueous solution. Journal of Hazardous Materials. 2010; 181(1-3):700-7.
  • 25. Čerović LS, Milonjić SK, Todorovi, MB, Trtanj MI, Pogozhev YS, Blagoveschenskii Y, Levashov EA. Point of zero charge of different carbides. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;297(1-3):1-6.
  • 26. Ngah WW, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites: A review.  Carbohydrate Polymers, 2011;83(4):1446–56.
  • 27. Ska DK. Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chemical Engineering Journal, 2011;173:520-9.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Kimya
Bölüm Makaleler
Yazarlar

Zeynep Mine Şenol 0000-0002-5250-1267

Selçuk Şimşek 0000-0001-5755-0335

Proje Numarası ZARA004
Yayımlanma Tarihi 15 Şubat 2020
Gönderilme Tarihi 18 Ekim 2019
Kabul Tarihi 20 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 1

Kaynak Göster

Vancouver Şenol ZM, Şimşek S. Removal of Pb2+ ions from aqueous medium by using chitosan-diatomite composite: equilibrium, kinetic and thermodynamic studies. JOTCSA. 2020;7(1):307-18.