Araştırma Makalesi
BibTex RIS Kaynak Göster

mploying Virial Coefficients for Optimal Solutions in Variational Calculations

Yıl 2024, Cilt: 45 Sayı: 3, 604 - 608, 30.09.2024
https://doi.org/10.17776/csj.1510611

Öz

In this study, virial coefficients for one and two-electron hydrogen and helium-like quantum dot structures confined in an infinite potential well were calculated. The virial coefficients were determined based on the dot radius using the Quantum Genetic Algorithm (QGA) method. Calculations were performed using Fernandez's expression; however, due to calculation errors in confined systems, this equivalent expression was found unsuitable as a direct stopping criterion. Instead, virial coefficients were calculated using the ⟨T⟩/⟨V⟩ relationship, and the results were plotted. The fitting function obtained for the virial coefficients is proposed as an effective cutoff criterion for electronic structure calculations of quantum dot systems.

Kaynakça

  • [1] Özmen, A., Yakar, Y., Çakır, B., Atav, Ü., Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot, Opt. Commun., (2009) 282, 3999.
  • [2] Çakır, B., Yakar, Y., Özmen, A., Sezer, M.Ö., Şahin, M., Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Superlattices Microstruct., (2010) 47, 556.
  • [3] Çakır, B., Yakar, Y., Özmen, A., Linear and nonlinear optical absorption coefficients of spherical quantum dot inside external magnetic field. Physica B, (2017) 510, 86-91.
  • [4] Rahimi, F., Ghaffary, T., Naimi, Y., Khajehazad, H., Effect of magnetic field on energy states and optical properties of quantum dots and quantum antidots, Optical and Quantum Electronics, (2021) 53 (47).
  • [5] Çakır, B., Yakar, Y., Özmen, A., Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential, Journal of luminescence, (2012) 132, 10, 2659.
  • [6] Çakır, B., Özmen, A., Atav, Ü., Yüksel, H., Yakar, Y., Investigation of electronic structure of a quantum dot using Slater-type orbitals and Quantum Genetic Algorithm, Int. J. Mod. Phys. C, (2007)18, 61-72.
  • [7] Rayleigh, Lord, Scientific Papers (1905), Vol. 5: 1902-1910. Cambridge: University Press.
  • [8] Poincaré, H., Lectures on Cosmological Theories, (1911) Paris: Hermann.
  • [9] Zwicky, F. "Die Rotverschiebung von extragalaktischen Nebeln", Helvetica Physica Acta (1933) 6: 110–127.
  • [10] Ledoux, P., On the radial pulsation of gaseous stars, Astrophysical Journal, (1945) 102, 143–153.
  • [11] Kohn, W., Two applications of the variational method to quantum mechanics, Physical Review, (1947), 71(10), 635-636.
  • [12] Cottrell, T. L., & Paterson, S., The virial theorem in quantum mechanics, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, (1951) 42(327), 391-395.
  • [13] Parker, E. N., Tensor Virial Equations. Physical Review, (1954) 96(6), 1686–1689.
  • [14] Hoover, W. G., & Ree, F. H., Calculation of Virial Coefficients., J. Chem. Phys., (1965) 43(2), 375-392.
  • [15] Fernandez F. M., Castro, E., Hypervirial theorems and enclosed quantum-mechanical systems, Phy. Rev. A, (1981) 24(5), 2344.
  • [16] Fernandez F. M., Castro, E., Virial theorem and boundary conditions for approximate wave functions, Int. J. Quantum. Chem., (1982) 11, 741.
  • [17] Mukhopadhyay, S., Bhattacharyya, K., Confined systems and the modified virial theorem from semiclassical considerations, Int. J. Quantum Chem., (2005) 101, 27.
  • [18] Demir, C., Yakar, Y., Çakır, B., Özmen, A., Excited state energies, orbital energies and virial coefficients in confined multi-electron systems, J. Lumin., 251, 119185, 2022.
  • [19] Hirschfelder, J. O., Classical and Quantum Mechanical Hypervirial Theorems, J. Chem. Phys., (1960) 33 (5), 1462-1466.
  • [20] Fernandez, F. M., Castro, E., The virial theorem for systems subjected to sectionally defined potentials, J. Chem. Phys., 75 (6), 2908, 1981.
  • [21] J. H. Holland, Adaptation in Natural and Artificial Systems (1975) University of Michigan Press, Ann Arbor, MI.
  • [22] Çakir, B., Özmen, A., & Yakar, Y., Investigation of electronic structure of a Quantum Dot using Slater-Type Orbitals and Quantum Genetic Algorithm, Int. J. of Modern Physics C, (2007) 8(1), 61-72.
  • [23] Çakır, B., Özmen, A., Atav, Ü., Yakar, Y., Yüksel, H., Calculation of electronic structure of a spherical quantum dot using a combination of quantum genetic algorithm and Hartree Fock Roothaan method, Int. J. of Modern Physics C, (2008) 19(4), 599-609.
  • [24] Demir, C., Yakar, Y., Çakır, B., Özmen, A., Energies of the ground and excited states of confined two-electron atom in finite potential well, Physica B, (2023) 662, 414967.
Yıl 2024, Cilt: 45 Sayı: 3, 604 - 608, 30.09.2024
https://doi.org/10.17776/csj.1510611

Öz

Kaynakça

  • [1] Özmen, A., Yakar, Y., Çakır, B., Atav, Ü., Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot, Opt. Commun., (2009) 282, 3999.
  • [2] Çakır, B., Yakar, Y., Özmen, A., Sezer, M.Ö., Şahin, M., Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot, Superlattices Microstruct., (2010) 47, 556.
  • [3] Çakır, B., Yakar, Y., Özmen, A., Linear and nonlinear optical absorption coefficients of spherical quantum dot inside external magnetic field. Physica B, (2017) 510, 86-91.
  • [4] Rahimi, F., Ghaffary, T., Naimi, Y., Khajehazad, H., Effect of magnetic field on energy states and optical properties of quantum dots and quantum antidots, Optical and Quantum Electronics, (2021) 53 (47).
  • [5] Çakır, B., Yakar, Y., Özmen, A., Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential, Journal of luminescence, (2012) 132, 10, 2659.
  • [6] Çakır, B., Özmen, A., Atav, Ü., Yüksel, H., Yakar, Y., Investigation of electronic structure of a quantum dot using Slater-type orbitals and Quantum Genetic Algorithm, Int. J. Mod. Phys. C, (2007)18, 61-72.
  • [7] Rayleigh, Lord, Scientific Papers (1905), Vol. 5: 1902-1910. Cambridge: University Press.
  • [8] Poincaré, H., Lectures on Cosmological Theories, (1911) Paris: Hermann.
  • [9] Zwicky, F. "Die Rotverschiebung von extragalaktischen Nebeln", Helvetica Physica Acta (1933) 6: 110–127.
  • [10] Ledoux, P., On the radial pulsation of gaseous stars, Astrophysical Journal, (1945) 102, 143–153.
  • [11] Kohn, W., Two applications of the variational method to quantum mechanics, Physical Review, (1947), 71(10), 635-636.
  • [12] Cottrell, T. L., & Paterson, S., The virial theorem in quantum mechanics, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, (1951) 42(327), 391-395.
  • [13] Parker, E. N., Tensor Virial Equations. Physical Review, (1954) 96(6), 1686–1689.
  • [14] Hoover, W. G., & Ree, F. H., Calculation of Virial Coefficients., J. Chem. Phys., (1965) 43(2), 375-392.
  • [15] Fernandez F. M., Castro, E., Hypervirial theorems and enclosed quantum-mechanical systems, Phy. Rev. A, (1981) 24(5), 2344.
  • [16] Fernandez F. M., Castro, E., Virial theorem and boundary conditions for approximate wave functions, Int. J. Quantum. Chem., (1982) 11, 741.
  • [17] Mukhopadhyay, S., Bhattacharyya, K., Confined systems and the modified virial theorem from semiclassical considerations, Int. J. Quantum Chem., (2005) 101, 27.
  • [18] Demir, C., Yakar, Y., Çakır, B., Özmen, A., Excited state energies, orbital energies and virial coefficients in confined multi-electron systems, J. Lumin., 251, 119185, 2022.
  • [19] Hirschfelder, J. O., Classical and Quantum Mechanical Hypervirial Theorems, J. Chem. Phys., (1960) 33 (5), 1462-1466.
  • [20] Fernandez, F. M., Castro, E., The virial theorem for systems subjected to sectionally defined potentials, J. Chem. Phys., 75 (6), 2908, 1981.
  • [21] J. H. Holland, Adaptation in Natural and Artificial Systems (1975) University of Michigan Press, Ann Arbor, MI.
  • [22] Çakir, B., Özmen, A., & Yakar, Y., Investigation of electronic structure of a Quantum Dot using Slater-Type Orbitals and Quantum Genetic Algorithm, Int. J. of Modern Physics C, (2007) 8(1), 61-72.
  • [23] Çakır, B., Özmen, A., Atav, Ü., Yakar, Y., Yüksel, H., Calculation of electronic structure of a spherical quantum dot using a combination of quantum genetic algorithm and Hartree Fock Roothaan method, Int. J. of Modern Physics C, (2008) 19(4), 599-609.
  • [24] Demir, C., Yakar, Y., Çakır, B., Özmen, A., Energies of the ground and excited states of confined two-electron atom in finite potential well, Physica B, (2023) 662, 414967.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atom ve Molekül Fiziği
Bölüm Natural Sciences
Yazarlar

Mahmut Özgür Sezer 0000-0002-8415-8440

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 4 Temmuz 2024
Kabul Tarihi 3 Eylül 2024
Yayımlandığı Sayı Yıl 2024Cilt: 45 Sayı: 3

Kaynak Göster

APA Sezer, M. Ö. (2024). mploying Virial Coefficients for Optimal Solutions in Variational Calculations. Cumhuriyet Science Journal, 45(3), 604-608. https://doi.org/10.17776/csj.1510611