Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 45 Sayı: 3, 598 - 603, 30.09.2024
https://doi.org/10.17776/csj.1482632

Öz

Proje Numarası

This study is supported by TÜBİTAK 2209-A University Students Research Projects, No. 2209-A Tübitak-1919B012108759.

Kaynakça

  • [1] Manna S., Katiyar A., Aluguri R., Ray S. K., Temperature dependent photoluminescence and electroluminescence characteristics of core-shell Ge–GeO2 nanowires, Journal of Physics D: Applied Physics, 48 (2015) 215103.
  • [2] Rao N. S., Pathak A. P., Sathish N., Devaraju G., Saikiran V., Kulriya P. K., Agarwal D. C., Synthesis of Ge nanocrystals by atom beam sputtering and subsequent rapid thermal annealing, Solid State Communications, 150 (2010) 2122-2126.
  • [3] Bruno E., Scapellato G. G., Napolitani E., Mirabella S., Boninelli S., LaMagna A., Mastromatteo M., Salvador D. D., Fortunato G., Privitera V., Priolo F., Challenges and Opportunities for Doping Control in Ge for Micro and Optoelectronics Applications, ECS Transactions, 50 (5) (2013) 89.
  • [4] Rivera M., Velázquez R., Aldalbahi A., Zhou A. F., Feng P., High Operating Temperature and Low Power Consumption Boron Nitride Nanosheets Based Broadband UV Photodetector, Scientific Reports, 7 (2017) 42973.
  • [5] Hwang J., Jo C., Kim M. G., Chun J., Lim E., Kim S., Jeong S., Kim Y., Lee J., Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility, ACS Nano, 9 (2015) 5299–5309.
  • [6] Murphy N. R., Grant J. T., Sun L., Jones J. G., Jakubiak R., Shutthanandan V., Ramana C. V., Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films, Opt. Mater., 36 (2014) 1177-1182.
  • [7] Ramana C. V., Troitskaia I. B., Gromilov S. A., Atuchin V. V., Electrical properties of germanium oxide with α-quartz structure prepared by chemical precipitation, Ceram. Int., 38 (2012) 5251-5255.
  • [8] Chiasera A., Macchi C., Mariazzi S., Valligatla S., Lunelli L., Pederzolli C., Rao D. N., Somoza A., Brusa R. S., Ferrari M., CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering, Opt. Mater. Express, 3 (2013) 1561-1570.
  • [9] Miller J. W., Chesaux M., Deligiannis D., Mascher P., Bradley J. D. B., Low-loss GeO2thin films deposited by ion-assisted alternating current reactive sputtering for waveguide applications, Thin Solid Films, 709 (2020) 138165.
  • [10] Peng M., Li Y., Gao J., Zhang D., Jiang Z., Sun X., Electronic Structure and Photoluminescence Origin of Single-Crystalline Germanium Oxide Nanowires with Green Light Emission, J. Phys. Chem. C, 115 (2011) 11420-11426.
  • [11] Kim H. W., Shim S. H., Lee J. W., Cone-shaped structures of GeO2 fabricated by a thermal evaporation process, Appl. Surf. Sci., 253 (2007) 7207-7210.
  • [12] Hernández A. G., Escobosa-Echavarría A. E., Kudriavtsev Y., White luminescence emission from silicon implanted germanium, Appl. Surf. Sci., 428 (2018) 1098-1105.
  • [13] Feng J., Hu W., Zeng F., Lin H., Li L., Yang B., Peng Y., Wu D., Huo B., Tang X., Investigation of physically transient resistive switching memory based on GeO2 thin films, Appl. Phys. Lett., 117 (2020) 192102.
  • [14] Sakaguchi S., Todoroki S., Optical properties of GeO2 glass and optical fibers, Applied Optics, 36(27) (1997) 6809-6814.
  • [15] Armand P., Lignie A., Beaurain M., Papet P., Flux-Grown Piezoelectric Materials: Application to α-Quartz Analogues, Crystals, 4 (2014) 168-189.
  • [16] Balitskii D. B., Sil O. Y., Balitskii V. S., Pisarevskii Y. V, Pushcharovskii D. Y., Philippot E., Elastic, Piezoelectric, and Dielectric Properties of a-GeO2 Single Crystals, Crystallography Reports, 45(1) (2000) 145-147.
  • [17] Lin Y. M., Klavetter K. C., Heller A., Mullins C. B., Storage of Lithium in Hydrothermally Synthesized GeO2 Nanoparticles, J. Phys. Chem. Lett., 4 (2013) 999-1004.
  • [18] Wang X. L., Han W. Q., Chen H., Bai J., Tyson T. A., Yu X. Q., Wang X.J., Yang X. Q., Amorphous Hierarchical Porous GeOx as High-Capacity Anodes for Li Ion Batteries with Very Long Cycling Life, Journal of American Chemical Society, 133 (2011) 20692-20695.
  • [19] Ramana C. V., Carbajal-Franco G., Vemuri R. S., Troitskaia I. B., Gromilov S. A., Atuchin V. V., Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 174 (2010) 279-284.
  • [20] Afonso C. N., Gonzalo J., Pulsed laser deposition of thin films for optical applications, Nucl. Instruments Methods Phys. Res. B., 116 (1996) 404-409.
  • [21] Jang J. H., Koo J., Bae B., Fabrication and Ultraviolet Absorption of Sol–Gel-Derived Germanium Oxide Glass Thin Films, J. Am. Ceram. Soc., 83 (2000) 1356-1360.
  • [22] Bose N., Basu M., Mukherjee S., Study of optical properties of GeO2 nanocrystals as synthesized by hydrothermal technique, Mater. Res. Bull., 47 (2012) 1368-1373.
  • [23] Ardyanian M., Rinnert H., Devaux X., Vergnat M., Structure and photoluminescence properties of evaporated GeO𝑥 thin films, Appl. Phys. Lett., 89 (2006) 011902.
  • [24] Lange T., Njoroge W., Weis H., Beckers M., Wuttig M., Physical properties of thin GeO2 films produced by reactive DC magnetron sputtering, Thin Solid Films, 365 (2000) 82-89.
  • [25] Yin Z.Y., Garside B. K., Low-loss GeO2 optical waveguide fabrication using low deposition rate rf sputtering, Appl. Opt., 21 (1982) 4324–4328.
  • [26] Wolf P.J., Christensen T.M., Coit N. G., Swinford R. W., Seiler F. J., Thin film properties of germanium oxide synthesized by pulsed laser sputtering in vacuum and oxygen environments, J. Vac. Sci. Technol. A., 11 (1993) 2725-2732.
  • [27] Yin Z., Garside B. K., Low-loss GeO2 optical waveguide fabrication using low deposition rate rf sputtering, Appl. Opt., 21 (1982) 4324-4328.
  • [28] Chiasera A., Macchi C., Mariazzi S., Valligatla S., Lunelli L., Pederzolli C., Rao D.N., Somoza A., Brusa R. S., Ferrari M., CO2 Laser irraation of GeO 2 planar waveguide fabricated by rf-sputtering, Optical Materials Express, 3(9) (2013) 1561-1570.
  • [29] Xie M., Nishimura T., Yajima T., Toriumi A., Reaction of GeO2 with Ge and crystallization of GeO2 on Ge, J. Appl. Phys., 127 (2020) 024101.
  • [30] Chiasera A., Macchi C., Mariazzi S., Valligatla S., Varas S., Mazzola M., Bazzanella N., Lunelli L., Pederzolli C., Rao D.N., Righini G.C., Somoza A., Brusa R. S., Ferrari M., Proceedings Volume 8982, Optical Components and Materials XI; 89820D (2014).
  • [31] Baghdedi D., Hopoğlu H., Sarıtaş S., Demir İ., Altuntaş İ., Abdelmoula N., Gür E., Şenadım Tüzemen E., Comprehensive growth and characterization study of GeOx/Si, Journal of Molecular Structure, 1274 (2023) 134398.
  • [32] Sahu D. R., Parija S., Biswas S. K., Influence of annealing temperature on the structural and optical properties of ZnO thin films prepared by sol–gel method, Cryst. Res. Technol., 44 (2009) 186–192.
  • [33] Oba E., Sartori S. A., Zaghete M. A., Effects of annealing on the structural and optical properties of TiO2 thin films, Materials Letters, 65 (2011) 588-590.
  • [34] El-Nahass M. M., Zeyada H. M., Farag A. A. M., Optical constants and dispersion parameters of thermally evaporated cadmium sulfide thin films: Effects of annealing, Physica B: Condensed Matter, 405 (2010) 1339-1347.

Production of GeOx Films at Different Oxygen Flow Rates and Different Annealing Temperatures and Examination of Energy Band Gaps using Kubelka Munk Method

Yıl 2024, Cilt: 45 Sayı: 3, 598 - 603, 30.09.2024
https://doi.org/10.17776/csj.1482632

Öz

In this study, GeOx films were grown on silicon substrates using the Radio Frequency (RF) Magnetron Sputtering method at different oxygen flow rates and annealing temperatures. The films were produced at a substrate temperature of 250°C and a working pressure of 13 mTorr. Subsequently, the films were annealed at temperatures of 300°C, 500°C, 600°C, 700°C, 900°C, and 1000°C. Total and diffuse reflection measurements were performed to investigate the optical properties of the films. Energy band gaps were determined using diffuse reflection measurements and they were calculated using the Kubelka-Munk method. It was observed that the energy band gap increased with increasing oxygen ratio. Additionally, annealing temperatures were found to cause changes in the energy band gaps.

Proje Numarası

This study is supported by TÜBİTAK 2209-A University Students Research Projects, No. 2209-A Tübitak-1919B012108759.

Kaynakça

  • [1] Manna S., Katiyar A., Aluguri R., Ray S. K., Temperature dependent photoluminescence and electroluminescence characteristics of core-shell Ge–GeO2 nanowires, Journal of Physics D: Applied Physics, 48 (2015) 215103.
  • [2] Rao N. S., Pathak A. P., Sathish N., Devaraju G., Saikiran V., Kulriya P. K., Agarwal D. C., Synthesis of Ge nanocrystals by atom beam sputtering and subsequent rapid thermal annealing, Solid State Communications, 150 (2010) 2122-2126.
  • [3] Bruno E., Scapellato G. G., Napolitani E., Mirabella S., Boninelli S., LaMagna A., Mastromatteo M., Salvador D. D., Fortunato G., Privitera V., Priolo F., Challenges and Opportunities for Doping Control in Ge for Micro and Optoelectronics Applications, ECS Transactions, 50 (5) (2013) 89.
  • [4] Rivera M., Velázquez R., Aldalbahi A., Zhou A. F., Feng P., High Operating Temperature and Low Power Consumption Boron Nitride Nanosheets Based Broadband UV Photodetector, Scientific Reports, 7 (2017) 42973.
  • [5] Hwang J., Jo C., Kim M. G., Chun J., Lim E., Kim S., Jeong S., Kim Y., Lee J., Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility, ACS Nano, 9 (2015) 5299–5309.
  • [6] Murphy N. R., Grant J. T., Sun L., Jones J. G., Jakubiak R., Shutthanandan V., Ramana C. V., Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films, Opt. Mater., 36 (2014) 1177-1182.
  • [7] Ramana C. V., Troitskaia I. B., Gromilov S. A., Atuchin V. V., Electrical properties of germanium oxide with α-quartz structure prepared by chemical precipitation, Ceram. Int., 38 (2012) 5251-5255.
  • [8] Chiasera A., Macchi C., Mariazzi S., Valligatla S., Lunelli L., Pederzolli C., Rao D. N., Somoza A., Brusa R. S., Ferrari M., CO2 Laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering, Opt. Mater. Express, 3 (2013) 1561-1570.
  • [9] Miller J. W., Chesaux M., Deligiannis D., Mascher P., Bradley J. D. B., Low-loss GeO2thin films deposited by ion-assisted alternating current reactive sputtering for waveguide applications, Thin Solid Films, 709 (2020) 138165.
  • [10] Peng M., Li Y., Gao J., Zhang D., Jiang Z., Sun X., Electronic Structure and Photoluminescence Origin of Single-Crystalline Germanium Oxide Nanowires with Green Light Emission, J. Phys. Chem. C, 115 (2011) 11420-11426.
  • [11] Kim H. W., Shim S. H., Lee J. W., Cone-shaped structures of GeO2 fabricated by a thermal evaporation process, Appl. Surf. Sci., 253 (2007) 7207-7210.
  • [12] Hernández A. G., Escobosa-Echavarría A. E., Kudriavtsev Y., White luminescence emission from silicon implanted germanium, Appl. Surf. Sci., 428 (2018) 1098-1105.
  • [13] Feng J., Hu W., Zeng F., Lin H., Li L., Yang B., Peng Y., Wu D., Huo B., Tang X., Investigation of physically transient resistive switching memory based on GeO2 thin films, Appl. Phys. Lett., 117 (2020) 192102.
  • [14] Sakaguchi S., Todoroki S., Optical properties of GeO2 glass and optical fibers, Applied Optics, 36(27) (1997) 6809-6814.
  • [15] Armand P., Lignie A., Beaurain M., Papet P., Flux-Grown Piezoelectric Materials: Application to α-Quartz Analogues, Crystals, 4 (2014) 168-189.
  • [16] Balitskii D. B., Sil O. Y., Balitskii V. S., Pisarevskii Y. V, Pushcharovskii D. Y., Philippot E., Elastic, Piezoelectric, and Dielectric Properties of a-GeO2 Single Crystals, Crystallography Reports, 45(1) (2000) 145-147.
  • [17] Lin Y. M., Klavetter K. C., Heller A., Mullins C. B., Storage of Lithium in Hydrothermally Synthesized GeO2 Nanoparticles, J. Phys. Chem. Lett., 4 (2013) 999-1004.
  • [18] Wang X. L., Han W. Q., Chen H., Bai J., Tyson T. A., Yu X. Q., Wang X.J., Yang X. Q., Amorphous Hierarchical Porous GeOx as High-Capacity Anodes for Li Ion Batteries with Very Long Cycling Life, Journal of American Chemical Society, 133 (2011) 20692-20695.
  • [19] Ramana C. V., Carbajal-Franco G., Vemuri R. S., Troitskaia I. B., Gromilov S. A., Atuchin V. V., Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 174 (2010) 279-284.
  • [20] Afonso C. N., Gonzalo J., Pulsed laser deposition of thin films for optical applications, Nucl. Instruments Methods Phys. Res. B., 116 (1996) 404-409.
  • [21] Jang J. H., Koo J., Bae B., Fabrication and Ultraviolet Absorption of Sol–Gel-Derived Germanium Oxide Glass Thin Films, J. Am. Ceram. Soc., 83 (2000) 1356-1360.
  • [22] Bose N., Basu M., Mukherjee S., Study of optical properties of GeO2 nanocrystals as synthesized by hydrothermal technique, Mater. Res. Bull., 47 (2012) 1368-1373.
  • [23] Ardyanian M., Rinnert H., Devaux X., Vergnat M., Structure and photoluminescence properties of evaporated GeO𝑥 thin films, Appl. Phys. Lett., 89 (2006) 011902.
  • [24] Lange T., Njoroge W., Weis H., Beckers M., Wuttig M., Physical properties of thin GeO2 films produced by reactive DC magnetron sputtering, Thin Solid Films, 365 (2000) 82-89.
  • [25] Yin Z.Y., Garside B. K., Low-loss GeO2 optical waveguide fabrication using low deposition rate rf sputtering, Appl. Opt., 21 (1982) 4324–4328.
  • [26] Wolf P.J., Christensen T.M., Coit N. G., Swinford R. W., Seiler F. J., Thin film properties of germanium oxide synthesized by pulsed laser sputtering in vacuum and oxygen environments, J. Vac. Sci. Technol. A., 11 (1993) 2725-2732.
  • [27] Yin Z., Garside B. K., Low-loss GeO2 optical waveguide fabrication using low deposition rate rf sputtering, Appl. Opt., 21 (1982) 4324-4328.
  • [28] Chiasera A., Macchi C., Mariazzi S., Valligatla S., Lunelli L., Pederzolli C., Rao D.N., Somoza A., Brusa R. S., Ferrari M., CO2 Laser irraation of GeO 2 planar waveguide fabricated by rf-sputtering, Optical Materials Express, 3(9) (2013) 1561-1570.
  • [29] Xie M., Nishimura T., Yajima T., Toriumi A., Reaction of GeO2 with Ge and crystallization of GeO2 on Ge, J. Appl. Phys., 127 (2020) 024101.
  • [30] Chiasera A., Macchi C., Mariazzi S., Valligatla S., Varas S., Mazzola M., Bazzanella N., Lunelli L., Pederzolli C., Rao D.N., Righini G.C., Somoza A., Brusa R. S., Ferrari M., Proceedings Volume 8982, Optical Components and Materials XI; 89820D (2014).
  • [31] Baghdedi D., Hopoğlu H., Sarıtaş S., Demir İ., Altuntaş İ., Abdelmoula N., Gür E., Şenadım Tüzemen E., Comprehensive growth and characterization study of GeOx/Si, Journal of Molecular Structure, 1274 (2023) 134398.
  • [32] Sahu D. R., Parija S., Biswas S. K., Influence of annealing temperature on the structural and optical properties of ZnO thin films prepared by sol–gel method, Cryst. Res. Technol., 44 (2009) 186–192.
  • [33] Oba E., Sartori S. A., Zaghete M. A., Effects of annealing on the structural and optical properties of TiO2 thin films, Materials Letters, 65 (2011) 588-590.
  • [34] El-Nahass M. M., Zeyada H. M., Farag A. A. M., Optical constants and dispersion parameters of thermally evaporated cadmium sulfide thin films: Effects of annealing, Physica B: Condensed Matter, 405 (2010) 1339-1347.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Atomik, Moleküler ve Optik Fizik (Diğer), Malzeme Fiziği
Bölüm Natural Sciences
Yazarlar

Ayfer Özdemir 0009-0007-4573-5587

Şahide Gülizar Kızıl

Ebru Senadim Tuzemen

Proje Numarası This study is supported by TÜBİTAK 2209-A University Students Research Projects, No. 2209-A Tübitak-1919B012108759.
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 12 Mayıs 2024
Kabul Tarihi 21 Ağustos 2024
Yayımlandığı Sayı Yıl 2024Cilt: 45 Sayı: 3

Kaynak Göster

APA Özdemir, A., Kızıl, Ş. G., & Senadim Tuzemen, E. (2024). Production of GeOx Films at Different Oxygen Flow Rates and Different Annealing Temperatures and Examination of Energy Band Gaps using Kubelka Munk Method. Cumhuriyet Science Journal, 45(3), 598-603. https://doi.org/10.17776/csj.1482632