Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the Short-Term Drought Stress Tolerance of Three Barley Varieties Using Physiological and Biochemical Changes

Yıl 2024, Cilt: 45 Sayı: 3, 471 - 477, 30.09.2024
https://doi.org/10.17776/csj.1446224

Öz

Barley (Hordeum vulgare L.) is an important agricultural plant that can adapt to stress conditions. Abiotic stress factors significantly reduce growth, photosynthetic efficiency and metabolic processes in barley. Drought stress increases reactive oxygen species (ROS) in plant cells, and the antioxidant defense system reduces damage caused by overproduction of ROS. The aim of this study was to determine the physiological and biochemical effects of short-term drought stress on some barley cultivars (Kalaycı-97, Harman and Yaprak) grown in Turkey. In 21-day-old seedlings, short-term drought stress decreased the total chlorophyll content. The amount of total protein reduced in the Harman variety, while it increased by 19% in Kalaycı-97 and 27% in Yaprak. The H2O2 content decreased in Yaprak while increasing by 76% in the Kalaycı-97 variety. It was demonstrated that TBARS levels increased by 62% in Kalaycı-97 and 26% in Yaprak. In other ways, while drought stress caused a 48% decrease in APX activity in Kalaycı-97, it caused a 42% and 20% increase in APX activity in Harman and Yaprak, respectively. However, in Kalaycı-97 and Yaprak, CAT increased by 48% and 69%, respectively. These results indicate that Yaprak genotype is tolerant, Kalaycı-97 sensitive and Harman moderately tolerant to short term drought stress.

Destekleyen Kurum

The Council of Higher Education 100/2000 (CoHE 100/2000) Doctoral Scholarship Programme

Teşekkür

The authors are grateful to CoHE (the Council of Higher Education 100/2000 Doctoral Scholarship Programme) for this scholarship programme.

Kaynakça

  • [1] Hussain H.A., Men S., Hussain S., Chen Y., Ali S., Zhang S., Wang L., Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports., 9(1) (2019) 1-12.
  • [2] Bhuyan M.B., Hasanuzzaman M., Parvin K., Mohsin S.M., Al Mahmud J., Nahar K., Fujita M., Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regulation. 90(3) (2020) 409-424.
  • [3] Toraman P.Ş., Ergün N., Çalıcı B., Some abiotic stress on growth and lipid peroxidation on wheat seedlings. Natural and Engineering Sciences. 5(3) (2020) 144-154.
  • [4] Zhanassova K., Kurmanbayeva A., Gadilgereyeva B., Yermukhambetova R., Iksat N., Amanbayeva U., Bekturova A., Tleukulova Z., Omarov R., Masalimov Z., ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiologiae Plantarum. 43(8) (2021) 1-12.
  • [5] Choudhury F.K., Rivero R.M., Blumwald E., Mittler R., Reactive oxygen species, abiotic stress and stress combination. The Plant Journal. 90(5) (2017) 856-867.
  • [6] Ding H., Ma D., Huang X., Hou J., Wang C., Xie Y., Wang Y., Qin H., Guo T., Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiologiae Plantarum. 41(7) (2019) 1-11.
  • [7] Turkish Grain Board, Cereals Industry Report for 2019 (TGB 2019). Available at: https://lk.tc/ka9by. Retrieved March 31, 2021.
  • [8] Agricultural Economic and Policy Development Institute, Ocak 2021 Agricultural Products Market, Barley Report Date of Access (AEPDI, 2021). Available at: https://lk.tc/nyR8w. Retrieved March 31, 2021.
  • [9] Torun H., Ayaz F.A., Tuz stresi koşullarında salisilik asidin zamana bağlı uygulanmasının arpa (Hordeum vulgare L.) köklerinin antioksidan savunma sistemi üzerine etkileri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi-C Yaşam Bilimleri ve Biyoteknoloji. 8(1) (2019) 69-84.
  • [10] Sekmen A.H., Özgür R., Uzilday B., Türkan I., Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany. 99 (2014) 141-149.
  • [11] Hoagland D.R., Arnon D.I., The Water-Culture Method for Growing Plants Without Soil. In Circular. California Agricultural Experiment Station. 347 (1950) 32.
  • [12] Li C., Liu C., Ma X., Wang A., Duan R., Nawrath C., Chen G., Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity. Breeding Science. 65(4) (2015) 327-332.
  • [13] Smart R.E., Bingham G.E., Rapid estimates of relative water content. Plant Physiology. 53(2) (1974) 258-260.
  • [14] Peryea F.J., Kammereck R., Use of Minolta Spad‐502 chlorophyll meter to quantify the effectiveness of mid‐summer trunk injection of iron on chlorotic pear trees. Journal of plant Nutrition. 20(11) (1997) 1457-1463.
  • [15] Sekmen Çetinel A.H., Gökçe A., Erdik E., Çetinel B., Çetinkaya N., The Effect of Trichoderma citrinoviride Treatment under Salinity Combined to Rhizoctonia solani Infection in Strawberry (Fragaria x ananassa Duch.). Agronomy. 11(8) (2021) 1589.
  • [16] Bradford M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2) (1976) 248-254.
  • [17] Bergmeyer N., Methoden der enzymatischen analyse. Akademia Verlag, Berlin. 1 (1970) 636-647.
  • [18] Nakano Y., Asada K., Hydrogen Peroxide is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts Plant. Cell Physiology. 22(3) (1981) 867-880.
  • [19] Cheeseman J.M., Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany. 57 (2006) 2435–44 pp.
  • [20] Kumar D., Yusuf M.A., Singh P., Sardar M., Sarin N.B., Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-protocol. 4(8) (2014) 1108.
  • [21] Madhava R.K.V., Sresty T.V.S., Antioxidative Parameters in the Seedlings of Pigeonpea (Cajanus cajan L. Millspaugh) in Response to Zn and Ni Stresses. Plant Science. 157 (2000) 113-128.
  • [22] Ferioun M., Srhiouar N., Bouhraoua S., El Ghachtouli N., Louahlia S., Physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon. 9(2) (2023)
  • [23] Farooq T.H., Bukhari M.A., Irfan M.S., Rafay M., Shakoor A., Rashid M.H.U., Lin Y., Saqib M., Malik Z., Khurshid, N., Effect of Exogenous Application of Nicotinic Acid on Morpho-Physiological Characteristics of Hordeum vulgare L. under Water Stress. Plants. 11(18) (2022) 2443.
  • [24] Cai K., Chen X., Han Z., Wu X., Zhang S., Li Q., Nazir M.M., Zhang G., Zeng F., Screening of worldwide barley collection for drought tolerance: The assessment of various physiological measures as the selection criteria. Frontiers in Plant Science. 11 (2020) 1159.
  • [25] Hasanuzzaman M., Shabala L., Brodribb T.J., Zhou M., Shabala S., Understanding physiological and morphological traits contributing to drought tolerance in barley. Journal of Agronomy and Crop Science. 205(2) (2019) 129-140.
  • [26] Fatemi R., Yarnia M., Mohammadi S., Vand E.K., Mirashkari B., Screening barley genotypes in terms of some quantitative and qualitative characteristics under normal and water deficit stress conditions. AJAB Asian J Agric & Biol (2) (2023).
  • [27] Acar O., Türkan I., Özdemir F., Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiologiae Plantarum. 23 (2001) 351-356.
  • [28] Seçkin B., Türkan I., Sekmen A.H., Özfidan C., The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany. 69(1) (2010) 76-85.
  • [29] Haddad H., Jafari B., Analysis of antioxidant enzyme activity during reproductive stages of barley under drought stress. Journal of Ecobiotechnology. 3(10) (2011) 40-47.
  • [30] Hasanuzzaman M., Shabala L., Brodribb T.J., Zhou M., Shabala S., Understanding the role of physiological and agronomical traits during drought recovery as a determinant of differential drought stress tolerance in Barley. Agronomy. 12(9) (2022) 2136.
  • [31] Patel M., Parida A.K., Role of hydrogen sulfide in alleviating oxidative stress in plants through induction of antioxidative defense mechanism, and modulations of physiological and biochemical components. In Hydrogen Sulfide in Plant Biology: Academic Press. (2021) 55-85.
  • [32] Dar O.I., Singh K., Sharma S., Aslam J., Kaur A., Bhardwaj R., Sharma A., Regulation of drought stress by hydrogen sulfide in plants. In Hydrogen Sulfide in Plant Biology: Academic Press. (2021). 229-242.
  • [33] Islam M.Z., Park B.J., Jeong S.Y., Kang, S.W., Shin B.K., Lee Y.T., Assessment of biochemical compounds and antioxidant enzyme activity in barley and wheatgrass under water‐deficit condition. Journal of the Science of Food and Agriculture. 102(5) (2021) 1995-2002.
  • [34] Rohman M.M., Alam S.S., Akhi A.H., Begum F., Amiruzzaman M., Response of catalase to drought in barley (Hordeum vulgare L.) seedlings and its purification. African Journal of Biotechnology. 19(7) (2020) 478-486.
  • [35] Hellal F.A., El-Shabrawi H.M., Abd El-Hady M., Khatab I.A., El-Sayed S.A.A., Abdelly C., Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. Journal of Genetic Engineering and Biotechnology. 16(1) (2018) 203-212.
  • [36] Harb A., Awad D., Samarah N., Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions. 10(1) 2015) 109-116.
  • [37] Nykiel M., Gietler M., Fidler J., Graska J., Rybarczyk-Płońska A., Prabucka B., Muszyńska E., Bocianowski J., Labudda, M., Differential Water Deficit in Leaves Is a Principal Factor Modifying Barley Response to Drought Stress. International Journal of Molecular Sciences. 23(23) (2022) 15240.
Yıl 2024, Cilt: 45 Sayı: 3, 471 - 477, 30.09.2024
https://doi.org/10.17776/csj.1446224

Öz

Kaynakça

  • [1] Hussain H.A., Men S., Hussain S., Chen Y., Ali S., Zhang S., Wang L., Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports., 9(1) (2019) 1-12.
  • [2] Bhuyan M.B., Hasanuzzaman M., Parvin K., Mohsin S.M., Al Mahmud J., Nahar K., Fujita M., Nitric oxide and hydrogen sulfide: two intimate collaborators regulating plant defense against abiotic stress. Plant Growth Regulation. 90(3) (2020) 409-424.
  • [3] Toraman P.Ş., Ergün N., Çalıcı B., Some abiotic stress on growth and lipid peroxidation on wheat seedlings. Natural and Engineering Sciences. 5(3) (2020) 144-154.
  • [4] Zhanassova K., Kurmanbayeva A., Gadilgereyeva B., Yermukhambetova R., Iksat N., Amanbayeva U., Bekturova A., Tleukulova Z., Omarov R., Masalimov Z., ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiologiae Plantarum. 43(8) (2021) 1-12.
  • [5] Choudhury F.K., Rivero R.M., Blumwald E., Mittler R., Reactive oxygen species, abiotic stress and stress combination. The Plant Journal. 90(5) (2017) 856-867.
  • [6] Ding H., Ma D., Huang X., Hou J., Wang C., Xie Y., Wang Y., Qin H., Guo T., Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiologiae Plantarum. 41(7) (2019) 1-11.
  • [7] Turkish Grain Board, Cereals Industry Report for 2019 (TGB 2019). Available at: https://lk.tc/ka9by. Retrieved March 31, 2021.
  • [8] Agricultural Economic and Policy Development Institute, Ocak 2021 Agricultural Products Market, Barley Report Date of Access (AEPDI, 2021). Available at: https://lk.tc/nyR8w. Retrieved March 31, 2021.
  • [9] Torun H., Ayaz F.A., Tuz stresi koşullarında salisilik asidin zamana bağlı uygulanmasının arpa (Hordeum vulgare L.) köklerinin antioksidan savunma sistemi üzerine etkileri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi-C Yaşam Bilimleri ve Biyoteknoloji. 8(1) (2019) 69-84.
  • [10] Sekmen A.H., Özgür R., Uzilday B., Türkan I., Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany. 99 (2014) 141-149.
  • [11] Hoagland D.R., Arnon D.I., The Water-Culture Method for Growing Plants Without Soil. In Circular. California Agricultural Experiment Station. 347 (1950) 32.
  • [12] Li C., Liu C., Ma X., Wang A., Duan R., Nawrath C., Chen G., Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity. Breeding Science. 65(4) (2015) 327-332.
  • [13] Smart R.E., Bingham G.E., Rapid estimates of relative water content. Plant Physiology. 53(2) (1974) 258-260.
  • [14] Peryea F.J., Kammereck R., Use of Minolta Spad‐502 chlorophyll meter to quantify the effectiveness of mid‐summer trunk injection of iron on chlorotic pear trees. Journal of plant Nutrition. 20(11) (1997) 1457-1463.
  • [15] Sekmen Çetinel A.H., Gökçe A., Erdik E., Çetinel B., Çetinkaya N., The Effect of Trichoderma citrinoviride Treatment under Salinity Combined to Rhizoctonia solani Infection in Strawberry (Fragaria x ananassa Duch.). Agronomy. 11(8) (2021) 1589.
  • [16] Bradford M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1-2) (1976) 248-254.
  • [17] Bergmeyer N., Methoden der enzymatischen analyse. Akademia Verlag, Berlin. 1 (1970) 636-647.
  • [18] Nakano Y., Asada K., Hydrogen Peroxide is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts Plant. Cell Physiology. 22(3) (1981) 867-880.
  • [19] Cheeseman J.M., Hydrogen peroxide concentrations in leaves under natural conditions. Journal of Experimental Botany. 57 (2006) 2435–44 pp.
  • [20] Kumar D., Yusuf M.A., Singh P., Sardar M., Sarin N.B., Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-protocol. 4(8) (2014) 1108.
  • [21] Madhava R.K.V., Sresty T.V.S., Antioxidative Parameters in the Seedlings of Pigeonpea (Cajanus cajan L. Millspaugh) in Response to Zn and Ni Stresses. Plant Science. 157 (2000) 113-128.
  • [22] Ferioun M., Srhiouar N., Bouhraoua S., El Ghachtouli N., Louahlia S., Physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon. 9(2) (2023)
  • [23] Farooq T.H., Bukhari M.A., Irfan M.S., Rafay M., Shakoor A., Rashid M.H.U., Lin Y., Saqib M., Malik Z., Khurshid, N., Effect of Exogenous Application of Nicotinic Acid on Morpho-Physiological Characteristics of Hordeum vulgare L. under Water Stress. Plants. 11(18) (2022) 2443.
  • [24] Cai K., Chen X., Han Z., Wu X., Zhang S., Li Q., Nazir M.M., Zhang G., Zeng F., Screening of worldwide barley collection for drought tolerance: The assessment of various physiological measures as the selection criteria. Frontiers in Plant Science. 11 (2020) 1159.
  • [25] Hasanuzzaman M., Shabala L., Brodribb T.J., Zhou M., Shabala S., Understanding physiological and morphological traits contributing to drought tolerance in barley. Journal of Agronomy and Crop Science. 205(2) (2019) 129-140.
  • [26] Fatemi R., Yarnia M., Mohammadi S., Vand E.K., Mirashkari B., Screening barley genotypes in terms of some quantitative and qualitative characteristics under normal and water deficit stress conditions. AJAB Asian J Agric & Biol (2) (2023).
  • [27] Acar O., Türkan I., Özdemir F., Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiologiae Plantarum. 23 (2001) 351-356.
  • [28] Seçkin B., Türkan I., Sekmen A.H., Özfidan C., The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). Environmental and Experimental Botany. 69(1) (2010) 76-85.
  • [29] Haddad H., Jafari B., Analysis of antioxidant enzyme activity during reproductive stages of barley under drought stress. Journal of Ecobiotechnology. 3(10) (2011) 40-47.
  • [30] Hasanuzzaman M., Shabala L., Brodribb T.J., Zhou M., Shabala S., Understanding the role of physiological and agronomical traits during drought recovery as a determinant of differential drought stress tolerance in Barley. Agronomy. 12(9) (2022) 2136.
  • [31] Patel M., Parida A.K., Role of hydrogen sulfide in alleviating oxidative stress in plants through induction of antioxidative defense mechanism, and modulations of physiological and biochemical components. In Hydrogen Sulfide in Plant Biology: Academic Press. (2021) 55-85.
  • [32] Dar O.I., Singh K., Sharma S., Aslam J., Kaur A., Bhardwaj R., Sharma A., Regulation of drought stress by hydrogen sulfide in plants. In Hydrogen Sulfide in Plant Biology: Academic Press. (2021). 229-242.
  • [33] Islam M.Z., Park B.J., Jeong S.Y., Kang, S.W., Shin B.K., Lee Y.T., Assessment of biochemical compounds and antioxidant enzyme activity in barley and wheatgrass under water‐deficit condition. Journal of the Science of Food and Agriculture. 102(5) (2021) 1995-2002.
  • [34] Rohman M.M., Alam S.S., Akhi A.H., Begum F., Amiruzzaman M., Response of catalase to drought in barley (Hordeum vulgare L.) seedlings and its purification. African Journal of Biotechnology. 19(7) (2020) 478-486.
  • [35] Hellal F.A., El-Shabrawi H.M., Abd El-Hady M., Khatab I.A., El-Sayed S.A.A., Abdelly C., Influence of PEG induced drought stress on molecular and biochemical constituents and seedling growth of Egyptian barley cultivars. Journal of Genetic Engineering and Biotechnology. 16(1) (2018) 203-212.
  • [36] Harb A., Awad D., Samarah N., Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions. 10(1) 2015) 109-116.
  • [37] Nykiel M., Gietler M., Fidler J., Graska J., Rybarczyk-Płońska A., Prabucka B., Muszyńska E., Bocianowski J., Labudda, M., Differential Water Deficit in Leaves Is a Principal Factor Modifying Barley Response to Drought Stress. International Journal of Molecular Sciences. 23(23) (2022) 15240.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Natural Sciences
Yazarlar

Gamze Baltacıer 0000-0001-9299-3115

Okan Acar 0000-0002-9818-8827

Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 2 Mart 2024
Kabul Tarihi 15 Eylül 2024
Yayımlandığı Sayı Yıl 2024Cilt: 45 Sayı: 3

Kaynak Göster

APA Baltacıer, G., & Acar, O. (2024). Determination of the Short-Term Drought Stress Tolerance of Three Barley Varieties Using Physiological and Biochemical Changes. Cumhuriyet Science Journal, 45(3), 471-477. https://doi.org/10.17776/csj.1446224