Research Article
BibTex RIS Cite

Polyacrylamide@Tangerine Peel Composite: A Novel Adsorbent for Efficient Removal of Pb2+ Ions from Water

Year 2024, Volume: 45 Issue: 2, 322 - 330, 30.06.2024
https://doi.org/10.17776/csj.1452166

Abstract

In this study, hydrogel@fruit peel composite was synthesized by using polyacrylamide (PAA), a hydrogel, and tangerine peel (TP) as biowaste. The removal performance of PAA@TP was investigated for the Pb2+ ions. The FT-IR and SEM-EDX structural characterizations of PAA@TP showed that PAA@TP has various functional groups. The adsorption data fit to the isotherm models was investigated and the best fit was found with the Langmuir model. This showed that the binding sites on the surface of the PAA@TP composite showed a homogeneous distribution and that Pb2+ ions formed a monolayer on this homogeneous. The results show that PAA@TP can alternatively be efficiently used to treat wastewater containing Pb2+ ions

References

  • [1] Razzak S.A., Faruque M.O., Alsheikh Z., Alsheikhmohamad L., Alkuroud D., Alfayez A., Hossain S.M.Z., Hossain M.M., A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater, Environ. Adv., 7 (2022) 100168.
  • [2] Qu X., Brame J., Li Q., Alvarez P.J.J., Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse, Acc. Chem. Res., 46(3) (2013) 834-843.
  • [3] Arbabi M., Hemati S., Amiri M., Removal of lead ions from industrial wastewater: A review of Removal methods, Int. J. Epidemiol. Res., 4 (2015) 10.
  • [4] Jayasri M.A., Suthindhiran K., Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation, Appl. Water Sci., 7 (2017).
  • [5] Chaemiso, T. D., Nefo, T. Removal methods of heavy metals from laboratory wastewater, J. Nat. Sci. Res., 9(2) (2019) 36-42.
  • [6] Iftekhar S., Ramasamy D. L., Srivastava V., Asif M. B., Sillanpää M., Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review. Chemosphere., 204 (2018) 413-430.
  • [7] Feng, N., Guo, X., Liang, S. Adsorption study of copper (II) by chemically modified orange peel, J. Hazard. Mater., 164 (2009) 1286-1292.
  • [8] ElSayed, E. E. . Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study), Water Sci., 32(1) (2018) 32-43.
  • [9] Arslan, D. Ş., Ertap, H., Şenol, Z. M., El Messaoudi, N., Mehmeti, V. Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution, J. Polym. Environ., (2023) 1-15.
  • [10] Şen, N. E., Şenol, Z. M. Effective removal of Allura red food dye from water using cross-linked chitosan-diatomite composite beads, Int. J. Biol. Macromol., 253 (2023) 126632.
  • [11] Denkova-Kostova, R., Teneva, D., Tomova, T., Goranov, B., Denkova, Z., Shopska, V., Hristova-Ivanova, Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume), Sect. C. J. Biosci., 76(5-6), (2021) 175-185.
  • [12] Bureš, M. S., Maslov Bandić, L., Vlahoviček-Kahlina, K. Determination of bioactive components in mandarin fruits: A review, Crit. Rev. Anal. Chem., 53(7) (2023) 1489-1514.
  • [13] da Costa Marques, V. Valorization of Tangerine Peels in the Preparation of Adsorbents for Removal of Ni (II) From Aqueous Solutions (Master's thesis, Instituto Politecnico de Braganca (Portugal), (2020).
  • [14] Unugul T., Nigiz F. U. Preparation and characterization of an active carbon adsorbent from waste mandarin peel and determination of adsorption behavior on removal of synthetic dye solution, Air. Soil Pollut., 231(11) (2020) 538.
  • [15] Husein D. Z. Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel, Desalin. Water Treat., 51(34-36) (2013). 6761-6769.
  • [16] Yılmaz M., Eldeeb, T. M., Hassaan, M. A., El-Nemr, M. A., Ragab, S., El Nemr, A. The use of mandarin-biochar-O3-TETA (MBT) produced from mandarin peels as a natural adsorbent for the removal of acid red 35 (AR35) dye from water, Environ. Process., 9(3) (2022) 44.
  • [17] Inagaki C. S., Caretta T. D. O., Alfaya R. V. D. S., Alfaya A. A. D. S. Mexerica mandarin (Citrus nobilis) peel as a new biosorbent to remove Cu (II), Cd (II), and Pb (II) from industrial effluent, Desalin, Water Treat., 51(28-30) (2013) 5537-5546.
  • [18] Özdemir N. C., Bilici, Z., Saleh M., Dizge N. Adsorption of phosphate ions and RBBR dye from aqueous solution using thermally activated mandarin peel waste, Water Pract. Technol., 19(1) (2024) 170-180.
  • [19] Torab M. M., Biosorption of lanthanum and cerium from aqueous solutions using tangerine (Citrus reticulata) peel: equilibrium, kinetic and thermodynamic studies, Chem. Ind. Chem. Eng. Q., 19(1) (2013) 79-88.
  • [20] Pavan F. A., Mazzocato A. C., Jacques R. A., Dias, S. L. Ponkan peel: a potential biosorbent for removal of Pb (II) ions from aqueous solution, Biochem. Eng. J., 40(2) (2008) 357-362.
  • [21] Abdić Š., Memić M., Šabanović E., Sulejmanović J., Begić S. Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: tangerine peel, Int. J. Environ. Sci. Technol. 15 (2018) 2511-2518.
  • [22] Chiem L. T., Huynh L., Ralston J., Beattie, D. A., An in situ ATR–FTIR study of polyacrylamide adsorption at the talc surface, J. Colloid Interface Sci. 297(1), (2006) 54-61.
  • [23] Yurishcheva A.A., Sorption of Pb2+ by magnetite coated with humic acids, J. Biol. Phys. Chem. 13 (2013) 61-68.
  • [24] Şenol Z.M., Gül Ü.D., Gürkan R., Bio-sorption of bisphenol a by the dried- and inactivated-lichen (Pseudoevernia furfuracea) biomass from aqueous solutions, J. Environ. Heal. Sci. Eng., 18 (2020) 853-864.
  • [25] Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9) (1918) 1361-1403.
  • [26] Freundlich H., Über die Adsorption in Lösungen, Zeitschrift Für Phys. Chemie. 57(1) (1907) 385-470.
  • [27] Hu, Q., & Zhang, Z. (2019). Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis, J. Mol. Liq., 277 (2019) 646-648.
  • [28] Pandey S., Fosso-Kankeu E., Spiro M. J., Waanders, F., Kumar, N., Ray, S. S., Kang, M. Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite, Mater. Today Chem., 18 (2020) 100376.
  • [29] Parvathi K., Nagendran R., Nareshkumar R., Lead biosorption onto waste beer yeast by-product: a means to decontaminate effluent generated from the battery manufacturing industry, Electron. J. Biotechnol. 10(1) (2007) 92-105.
  • [30] Anwar, J., Shafique, U., Salman, M., Dar, A., & Anwar, S. (2010). Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana, Bioresour. Technol., 101(6) (2010) 1752-1755.
  • [31] Gueu, S., Yao, B., Adouby, K., Ado, G. Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree, Int. J. Environ. Sci. Technol. 4 (2007) 11-17.
  • [32] Hashem M. A. (2007). Adsorption of lead ions from aqueous solution by okra wastes, Int. J. Phys. Sci., 2(7) (2007) 178-184.
  • [33] Argun M. E., Dursun S. Activation of pine bark surface with NaOH for lead removal, J. Int. Environ. Appl. Sci., 2 (2007) 5-10.
  • [34] Ngah, W. W., Fatinathan, S. Pb (II) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion exchange and mechanism studies, J. Environ. Sci., 22(3) (2010) 338-346.
  • [35] Shukla S. R., Pai R. S. Removal of Pb (II) from solution using cellulose‐containing materials, J. Chem. Technol. Biotechnol., 80(2) (2005) 176-183.
  • [36] Gupta N., Kushwaha A. K., Chattopadhyaya, M. C. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, J. Taiwan Inst. Chem. Eng. 43(1), (2012) 125-131.
  • [37] Ho, Y. S., McKay, G. Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Prot., 76(2) (1998) 183-191.
  • [38] Ho, Y. S., McKay, G. Pseudo-second order model for sorption processes, Process Biochem., 34(5) (1999) 451-465.
  • [39] Weber Jr, W. J., Morris, J. C. Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89(2) (1963) 31-59.
  • [40] Hong, S., Wen, C., He, J., Gan, F., Ho, Y. S. Adsorption thermodynamics of methylene blue onto bentonite, J. Hazard. Mater., 167(1-3) (2009) 630-633.
Year 2024, Volume: 45 Issue: 2, 322 - 330, 30.06.2024
https://doi.org/10.17776/csj.1452166

Abstract

References

  • [1] Razzak S.A., Faruque M.O., Alsheikh Z., Alsheikhmohamad L., Alkuroud D., Alfayez A., Hossain S.M.Z., Hossain M.M., A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater, Environ. Adv., 7 (2022) 100168.
  • [2] Qu X., Brame J., Li Q., Alvarez P.J.J., Nanotechnology for a safe and sustainable water supply: Enabling integrated water treatment and reuse, Acc. Chem. Res., 46(3) (2013) 834-843.
  • [3] Arbabi M., Hemati S., Amiri M., Removal of lead ions from industrial wastewater: A review of Removal methods, Int. J. Epidemiol. Res., 4 (2015) 10.
  • [4] Jayasri M.A., Suthindhiran K., Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation, Appl. Water Sci., 7 (2017).
  • [5] Chaemiso, T. D., Nefo, T. Removal methods of heavy metals from laboratory wastewater, J. Nat. Sci. Res., 9(2) (2019) 36-42.
  • [6] Iftekhar S., Ramasamy D. L., Srivastava V., Asif M. B., Sillanpää M., Understanding the factors affecting the adsorption of Lanthanum using different adsorbents: a critical review. Chemosphere., 204 (2018) 413-430.
  • [7] Feng, N., Guo, X., Liang, S. Adsorption study of copper (II) by chemically modified orange peel, J. Hazard. Mater., 164 (2009) 1286-1292.
  • [8] ElSayed, E. E. . Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study), Water Sci., 32(1) (2018) 32-43.
  • [9] Arslan, D. Ş., Ertap, H., Şenol, Z. M., El Messaoudi, N., Mehmeti, V. Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution, J. Polym. Environ., (2023) 1-15.
  • [10] Şen, N. E., Şenol, Z. M. Effective removal of Allura red food dye from water using cross-linked chitosan-diatomite composite beads, Int. J. Biol. Macromol., 253 (2023) 126632.
  • [11] Denkova-Kostova, R., Teneva, D., Tomova, T., Goranov, B., Denkova, Z., Shopska, V., Hristova-Ivanova, Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume), Sect. C. J. Biosci., 76(5-6), (2021) 175-185.
  • [12] Bureš, M. S., Maslov Bandić, L., Vlahoviček-Kahlina, K. Determination of bioactive components in mandarin fruits: A review, Crit. Rev. Anal. Chem., 53(7) (2023) 1489-1514.
  • [13] da Costa Marques, V. Valorization of Tangerine Peels in the Preparation of Adsorbents for Removal of Ni (II) From Aqueous Solutions (Master's thesis, Instituto Politecnico de Braganca (Portugal), (2020).
  • [14] Unugul T., Nigiz F. U. Preparation and characterization of an active carbon adsorbent from waste mandarin peel and determination of adsorption behavior on removal of synthetic dye solution, Air. Soil Pollut., 231(11) (2020) 538.
  • [15] Husein D. Z. Adsorption and removal of mercury ions from aqueous solution using raw and chemically modified Egyptian mandarin peel, Desalin. Water Treat., 51(34-36) (2013). 6761-6769.
  • [16] Yılmaz M., Eldeeb, T. M., Hassaan, M. A., El-Nemr, M. A., Ragab, S., El Nemr, A. The use of mandarin-biochar-O3-TETA (MBT) produced from mandarin peels as a natural adsorbent for the removal of acid red 35 (AR35) dye from water, Environ. Process., 9(3) (2022) 44.
  • [17] Inagaki C. S., Caretta T. D. O., Alfaya R. V. D. S., Alfaya A. A. D. S. Mexerica mandarin (Citrus nobilis) peel as a new biosorbent to remove Cu (II), Cd (II), and Pb (II) from industrial effluent, Desalin, Water Treat., 51(28-30) (2013) 5537-5546.
  • [18] Özdemir N. C., Bilici, Z., Saleh M., Dizge N. Adsorption of phosphate ions and RBBR dye from aqueous solution using thermally activated mandarin peel waste, Water Pract. Technol., 19(1) (2024) 170-180.
  • [19] Torab M. M., Biosorption of lanthanum and cerium from aqueous solutions using tangerine (Citrus reticulata) peel: equilibrium, kinetic and thermodynamic studies, Chem. Ind. Chem. Eng. Q., 19(1) (2013) 79-88.
  • [20] Pavan F. A., Mazzocato A. C., Jacques R. A., Dias, S. L. Ponkan peel: a potential biosorbent for removal of Pb (II) ions from aqueous solution, Biochem. Eng. J., 40(2) (2008) 357-362.
  • [21] Abdić Š., Memić M., Šabanović E., Sulejmanović J., Begić S. Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: tangerine peel, Int. J. Environ. Sci. Technol. 15 (2018) 2511-2518.
  • [22] Chiem L. T., Huynh L., Ralston J., Beattie, D. A., An in situ ATR–FTIR study of polyacrylamide adsorption at the talc surface, J. Colloid Interface Sci. 297(1), (2006) 54-61.
  • [23] Yurishcheva A.A., Sorption of Pb2+ by magnetite coated with humic acids, J. Biol. Phys. Chem. 13 (2013) 61-68.
  • [24] Şenol Z.M., Gül Ü.D., Gürkan R., Bio-sorption of bisphenol a by the dried- and inactivated-lichen (Pseudoevernia furfuracea) biomass from aqueous solutions, J. Environ. Heal. Sci. Eng., 18 (2020) 853-864.
  • [25] Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9) (1918) 1361-1403.
  • [26] Freundlich H., Über die Adsorption in Lösungen, Zeitschrift Für Phys. Chemie. 57(1) (1907) 385-470.
  • [27] Hu, Q., & Zhang, Z. (2019). Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis, J. Mol. Liq., 277 (2019) 646-648.
  • [28] Pandey S., Fosso-Kankeu E., Spiro M. J., Waanders, F., Kumar, N., Ray, S. S., Kang, M. Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite, Mater. Today Chem., 18 (2020) 100376.
  • [29] Parvathi K., Nagendran R., Nareshkumar R., Lead biosorption onto waste beer yeast by-product: a means to decontaminate effluent generated from the battery manufacturing industry, Electron. J. Biotechnol. 10(1) (2007) 92-105.
  • [30] Anwar, J., Shafique, U., Salman, M., Dar, A., & Anwar, S. (2010). Removal of Pb (II) and Cd (II) from water by adsorption on peels of banana, Bioresour. Technol., 101(6) (2010) 1752-1755.
  • [31] Gueu, S., Yao, B., Adouby, K., Ado, G. Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree, Int. J. Environ. Sci. Technol. 4 (2007) 11-17.
  • [32] Hashem M. A. (2007). Adsorption of lead ions from aqueous solution by okra wastes, Int. J. Phys. Sci., 2(7) (2007) 178-184.
  • [33] Argun M. E., Dursun S. Activation of pine bark surface with NaOH for lead removal, J. Int. Environ. Appl. Sci., 2 (2007) 5-10.
  • [34] Ngah, W. W., Fatinathan, S. Pb (II) biosorption using chitosan and chitosan derivatives beads: Equilibrium, ion exchange and mechanism studies, J. Environ. Sci., 22(3) (2010) 338-346.
  • [35] Shukla S. R., Pai R. S. Removal of Pb (II) from solution using cellulose‐containing materials, J. Chem. Technol. Biotechnol., 80(2) (2005) 176-183.
  • [36] Gupta N., Kushwaha A. K., Chattopadhyaya, M. C. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution, J. Taiwan Inst. Chem. Eng. 43(1), (2012) 125-131.
  • [37] Ho, Y. S., McKay, G. Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ. Prot., 76(2) (1998) 183-191.
  • [38] Ho, Y. S., McKay, G. Pseudo-second order model for sorption processes, Process Biochem., 34(5) (1999) 451-465.
  • [39] Weber Jr, W. J., Morris, J. C. Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89(2) (1963) 31-59.
  • [40] Hong, S., Wen, C., He, J., Gan, F., Ho, Y. S. Adsorption thermodynamics of methylene blue onto bentonite, J. Hazard. Mater., 167(1-3) (2009) 630-633.
There are 40 citations in total.

Details

Primary Language English
Subjects Colloid and Surface Chemistry
Journal Section Natural Sciences
Authors

Zeynep Mine Şenol 0000-0002-5250-1267

Publication Date June 30, 2024
Submission Date March 22, 2024
Acceptance Date June 14, 2024
Published in Issue Year 2024Volume: 45 Issue: 2

Cite

APA Şenol, Z. M. (2024). Polyacrylamide@Tangerine Peel Composite: A Novel Adsorbent for Efficient Removal of Pb2+ Ions from Water. Cumhuriyet Science Journal, 45(2), 322-330. https://doi.org/10.17776/csj.1452166