Research Article
BibTex RIS Cite

Fluorescence Cell Imaging by Carbon Quantum Dots Derived from the Medicinal Plant Malva Sylvestris

Year 2024, Volume: 45 Issue: 1, 73 - 79, 28.03.2024
https://doi.org/10.17776/csj.1333574

Abstract

Carbon quantum dots (CQDs) derived from biological samples exhibit low cytotoxicity and are often used as fluorescent agents for bioimaging cells or bacteria. In this study, fluorescent CQDs derived from Malva sylvestris, a wild edible medicinal plant (common mallow), were used to visualize the human epithelial cells (PNT1A). CQDs with strong blue photoluminescence were synthesized by microwave irradiation of dried M. sylvestris in water. CQDs' structural, morphological, surface features and photoluminescence properties were evaluated. In vitro, cytotoxicity assays revealed that carbon quantum dots from M. sylvestris have no cytotoxic effects on human epithelial cells. Non-cytotoxic and high photoluminescent CQDs from M. sylvestris can be exploited in bioimaging applications as a fluorophore agent

Supporting Institution

Selçuk Üniversitesi

Project Number

BAP-19201057

Thanks

The authors thank Selcuk University Research Foundation for funding the study (BAP-19201057).

References

  • [1] Song, Y., Zhu, S., Yang, B., Bioimaging based on fluorescent carbon dots, RSC Adv., 4 (52) (2014) 27184-27200.
  • [2] Devi, P., Saini, S., Kim, K.-H., The advanced role of carbon quantum dots in nanomedical applications, Biosens. Bioelectron., 141, (2019) 111158.
  • [3] Janus, Ł., Radwan-Pragłowska, J., Piątkowski, M., Bogdał, D., Facile Synthesis of Surface-Modified Carbon Quantum Dots (CQDs) for Biosensing and Bioimaging, Materials, 13 (15) (2020) 3313.
  • [4] Kou, X., Jiang, S., Park, S.-J., Meng, L.-Y., A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots, Dalton T., 49 (21) (2020) 6915-6938.
  • [5] Molaei, M.J., The optical properties and solar energy conversion applications of carbon quantum dots: A review, Sol. Energy, 196, (2020) 549-566.
  • [6] Travlou, N.A., Giannakoudakis, D.A., Algarra, M., Labella, A.M., Rodríguez-Castellón, E., Bandosz, T.J., S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity, Carbon, 135, (2018) 104-111.
  • [7] Ko, N.R., Nafiujjaman, M., Cherukula, K., Lee, S.J., Hong, S. J., Lim, H.N., Park, C. H., Park, I.K., Lee, Y.K., Kwon, I.K., Microwave‐assisted synthesis of biocompatible silk fibroin‐based carbon quantum dots, Part. Part. Syst. Char., 35 (3) (2018) 1700300.
  • [8] Tejwan, N., Saha, S.K., Das, J., Multifaceted applications of green carbon dots synthesized from renewable sources, Adv. Colloid and Interface Science, 275 (2020) 102046.
  • [9] Alam, A.-M., Park, B.-Y., Ghouri, Z.K., Park, M., Kim, H.-Y., Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications, Green Chem., 17 (7) (2015) 3791-3797.
  • [10] Sachdev, A., Gopinath, P., Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents, Analyst, 140 (12) (2015) 4260-4269.
  • [11] Bandi, R., Gangapuram, B.R., Dadigala, R., Eslavath, R., Singh, S.S., Guttena, V., Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents, RSC Adv., 6 (34) (2016) 28633-28639.
  • [12] Jeong, C.J., Roy, A.K., Kim, S.H., Lee, J.-E., Jeong, J.H., In, I., Park, S.Y., Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes, Nanoscale, 6 (24) (2014) 15196-15202.
  • [13] Pan, J., Zheng, Z., Yang, J., Wu, Y., Lu, F., Chen, Y., Gao, W., A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots, Talanta, 166 (2017) 1-7.
  • [14] Hua, X.-W., Bao, Y.-W., Wu, F.-G., Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery, ACS Appl Mater. Inter., 10 (13) (2018) 10664-10677.
  • [15] Su, W., Guo, R., Yuan, F., Li, Y., Li, X., Zhang, Y., Zhou, S., Fan, L., Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells, J. Phys. Chem. Lett., 11 (4) (2020) 1357-1363.
  • [16] Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., Mocan, L., Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed., 12 (2017) 5421.
  • [17] Wang, Y., Hu, A., Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C, 2 (34) (2014) 6921-6939.
  • [18] Das, R., Bandyopadhyay, R., Pramanik, P., Carbon quantum dots from natural resource: A review, Mater. Today Chem., 8 (2018) 96-109.
  • [19] Singh, R., Kumar, R., Singh, D., Savu, R., Moshkalev, S., Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review, Mater. Today Chem., 12 (2019) 282-314.
  • [20] Barros, L., Carvalho, A.M., Ferreira, I.C.F.R., Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition, Food Chem. Toxicol., 48 (6) (2010) 1466-1472.
  • [21] Almasian, A., Najafi, F., Eftekhari, M., Ardekani, M.R.S., Sharifzadeh, M., Khanavi, M., Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies, Mater. Sci. Eng.: C, 114 (2020) 111039.
  • [22] Benso, B., Franchin, M., Massarioli, A.P., Paschoal, J.A.R., Alencar, S.M., Franco, G.C.N., Rosalen, P.L., Anti-Inflammatory, Anti-osteoclastogenic and antioxidant effects of Malva sylvestris extract and fractions: In vitro and in vivo studies, PLoS One, 11 (9) (2016) e0162728.
  • [23] Gasparetto, J.C., Martins, C.A.F., Hayashi, S.S., Otuky, M.F., Pontarolo, R., Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine, J. Pharm. Pharmacol., 64 (2) (2012) 172-189.
  • [24] Benhammada, A., Trache, D., Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior, J. Therm. Anal. Calorim., (2021) 1-16.
  • [25] Mousavi, S.M., Hashemi, S.A., Zarei, M., Bahrani, S., Savardashtaki, A., Esmaeili, H., Lai, C. W., Mazraedoost, S., Abassi, M., Ramavandi, B., Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris, Data in Brief, 28 (2020) 104929.
  • [26] Feizi, S., Taghipour, E., Ghadam, P., Mohammadi, P., Antifungal, antibacterial, antibiofilm and colorimetric sensing of toxic metals activities of eco friendly, economical synthesized Ag/AgCl nanoparticles using Malva Sylvestris leaf extracts, Microb. Pathogenesis, 125 (2018) 33-42.
  • [27] Mao, X.-J., Zheng, H.-Z., Long, Y.-J., Du, J., Hao, J.-Y., Wang, L.-L., Zhou, D.-B., Study on the fluorescence characteristics of carbon dots, Spectrochim. Acta A, 75 (2) (2010) 553-557.
  • [28] Karakurt, S., Adali, O., Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes, Anti-Cancer Agents Me. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 16 (6) (2016) 781-789.
  • [29] Venkateswarlu, S., Viswanath, B., Reddy, A.S., Yoon, M., Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity, Sensor. Actuator. B-Chemical, 258 (2018) 172-183.
  • [30] Kumari, B., Kumari, R., Das, P., Visual detection of G-quadruplex with mushroom derived highly fluorescent carbon quantum dots, J. Pharmaceut. Biomed., 157 (2018) 137-144.
  • [31] Fan, R.-J., Sun, Q., Zhang, L., Zhang, Y., Lu, A.-H., Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging, Carbon, 71 (2014) 87-93.
  • [32] Sarkar, N., Sahoo, G., Das, R., Prusty, G., Swain, S.K., Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin, Eur. J. Pharm. Sci., 109 (2017) 359-371.
  • [33] Xu, O., Wan, S., Zhang, Y., Li, J., Zhu, X., A unique dual-excitation carbon quantum dots: Facile synthesis and application as a dual-“on-off-on” fluorescent probe, Sensor. Actuator. B-Chemical, 340 (2021) 129904.
Year 2024, Volume: 45 Issue: 1, 73 - 79, 28.03.2024
https://doi.org/10.17776/csj.1333574

Abstract

Project Number

BAP-19201057

References

  • [1] Song, Y., Zhu, S., Yang, B., Bioimaging based on fluorescent carbon dots, RSC Adv., 4 (52) (2014) 27184-27200.
  • [2] Devi, P., Saini, S., Kim, K.-H., The advanced role of carbon quantum dots in nanomedical applications, Biosens. Bioelectron., 141, (2019) 111158.
  • [3] Janus, Ł., Radwan-Pragłowska, J., Piątkowski, M., Bogdał, D., Facile Synthesis of Surface-Modified Carbon Quantum Dots (CQDs) for Biosensing and Bioimaging, Materials, 13 (15) (2020) 3313.
  • [4] Kou, X., Jiang, S., Park, S.-J., Meng, L.-Y., A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots, Dalton T., 49 (21) (2020) 6915-6938.
  • [5] Molaei, M.J., The optical properties and solar energy conversion applications of carbon quantum dots: A review, Sol. Energy, 196, (2020) 549-566.
  • [6] Travlou, N.A., Giannakoudakis, D.A., Algarra, M., Labella, A.M., Rodríguez-Castellón, E., Bandosz, T.J., S- and N-doped carbon quantum dots: Surface chemistry dependent antibacterial activity, Carbon, 135, (2018) 104-111.
  • [7] Ko, N.R., Nafiujjaman, M., Cherukula, K., Lee, S.J., Hong, S. J., Lim, H.N., Park, C. H., Park, I.K., Lee, Y.K., Kwon, I.K., Microwave‐assisted synthesis of biocompatible silk fibroin‐based carbon quantum dots, Part. Part. Syst. Char., 35 (3) (2018) 1700300.
  • [8] Tejwan, N., Saha, S.K., Das, J., Multifaceted applications of green carbon dots synthesized from renewable sources, Adv. Colloid and Interface Science, 275 (2020) 102046.
  • [9] Alam, A.-M., Park, B.-Y., Ghouri, Z.K., Park, M., Kim, H.-Y., Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications, Green Chem., 17 (7) (2015) 3791-3797.
  • [10] Sachdev, A., Gopinath, P., Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents, Analyst, 140 (12) (2015) 4260-4269.
  • [11] Bandi, R., Gangapuram, B.R., Dadigala, R., Eslavath, R., Singh, S.S., Guttena, V., Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents, RSC Adv., 6 (34) (2016) 28633-28639.
  • [12] Jeong, C.J., Roy, A.K., Kim, S.H., Lee, J.-E., Jeong, J.H., In, I., Park, S.Y., Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes, Nanoscale, 6 (24) (2014) 15196-15202.
  • [13] Pan, J., Zheng, Z., Yang, J., Wu, Y., Lu, F., Chen, Y., Gao, W., A novel and sensitive fluorescence sensor for glutathione detection by controlling the surface passivation degree of carbon quantum dots, Talanta, 166 (2017) 1-7.
  • [14] Hua, X.-W., Bao, Y.-W., Wu, F.-G., Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery, ACS Appl Mater. Inter., 10 (13) (2018) 10664-10677.
  • [15] Su, W., Guo, R., Yuan, F., Li, Y., Li, X., Zhang, Y., Zhou, S., Fan, L., Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells, J. Phys. Chem. Lett., 11 (4) (2020) 1357-1363.
  • [16] Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., Mocan, L., Quantum dots in imaging, drug delivery and sensor applications, Int. J. Nanomed., 12 (2017) 5421.
  • [17] Wang, Y., Hu, A., Carbon quantum dots: synthesis, properties and applications, J. Mater. Chem. C, 2 (34) (2014) 6921-6939.
  • [18] Das, R., Bandyopadhyay, R., Pramanik, P., Carbon quantum dots from natural resource: A review, Mater. Today Chem., 8 (2018) 96-109.
  • [19] Singh, R., Kumar, R., Singh, D., Savu, R., Moshkalev, S., Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: a review, Mater. Today Chem., 12 (2019) 282-314.
  • [20] Barros, L., Carvalho, A.M., Ferreira, I.C.F.R., Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition, Food Chem. Toxicol., 48 (6) (2010) 1466-1472.
  • [21] Almasian, A., Najafi, F., Eftekhari, M., Ardekani, M.R.S., Sharifzadeh, M., Khanavi, M., Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies, Mater. Sci. Eng.: C, 114 (2020) 111039.
  • [22] Benso, B., Franchin, M., Massarioli, A.P., Paschoal, J.A.R., Alencar, S.M., Franco, G.C.N., Rosalen, P.L., Anti-Inflammatory, Anti-osteoclastogenic and antioxidant effects of Malva sylvestris extract and fractions: In vitro and in vivo studies, PLoS One, 11 (9) (2016) e0162728.
  • [23] Gasparetto, J.C., Martins, C.A.F., Hayashi, S.S., Otuky, M.F., Pontarolo, R., Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine, J. Pharm. Pharmacol., 64 (2) (2012) 172-189.
  • [24] Benhammada, A., Trache, D., Green synthesis of CuO nanoparticles using Malva sylvestris leaf extract with different copper precursors and their effect on nitrocellulose thermal behavior, J. Therm. Anal. Calorim., (2021) 1-16.
  • [25] Mousavi, S.M., Hashemi, S.A., Zarei, M., Bahrani, S., Savardashtaki, A., Esmaeili, H., Lai, C. W., Mazraedoost, S., Abassi, M., Ramavandi, B., Data on cytotoxic and antibacterial activity of synthesized Fe3O4 nanoparticles using Malva sylvestris, Data in Brief, 28 (2020) 104929.
  • [26] Feizi, S., Taghipour, E., Ghadam, P., Mohammadi, P., Antifungal, antibacterial, antibiofilm and colorimetric sensing of toxic metals activities of eco friendly, economical synthesized Ag/AgCl nanoparticles using Malva Sylvestris leaf extracts, Microb. Pathogenesis, 125 (2018) 33-42.
  • [27] Mao, X.-J., Zheng, H.-Z., Long, Y.-J., Du, J., Hao, J.-Y., Wang, L.-L., Zhou, D.-B., Study on the fluorescence characteristics of carbon dots, Spectrochim. Acta A, 75 (2) (2010) 553-557.
  • [28] Karakurt, S., Adali, O., Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes, Anti-Cancer Agents Me. (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 16 (6) (2016) 781-789.
  • [29] Venkateswarlu, S., Viswanath, B., Reddy, A.S., Yoon, M., Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity, Sensor. Actuator. B-Chemical, 258 (2018) 172-183.
  • [30] Kumari, B., Kumari, R., Das, P., Visual detection of G-quadruplex with mushroom derived highly fluorescent carbon quantum dots, J. Pharmaceut. Biomed., 157 (2018) 137-144.
  • [31] Fan, R.-J., Sun, Q., Zhang, L., Zhang, Y., Lu, A.-H., Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging, Carbon, 71 (2014) 87-93.
  • [32] Sarkar, N., Sahoo, G., Das, R., Prusty, G., Swain, S.K., Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin, Eur. J. Pharm. Sci., 109 (2017) 359-371.
  • [33] Xu, O., Wan, S., Zhang, Y., Li, J., Zhu, X., A unique dual-excitation carbon quantum dots: Facile synthesis and application as a dual-“on-off-on” fluorescent probe, Sensor. Actuator. B-Chemical, 340 (2021) 129904.
There are 33 citations in total.

Details

Primary Language English
Subjects Analytical Spectrometry, Instrumental Methods
Journal Section Natural Sciences
Authors

Layth Shakir Mahmood 0000-0002-2551-4329

Gulsin Arslan

Idris Sargin 0000-0003-3785-9575

Serdar Karakurt 0000-0002-4449-6103

Project Number BAP-19201057
Publication Date March 28, 2024
Submission Date July 27, 2023
Acceptance Date January 31, 2024
Published in Issue Year 2024Volume: 45 Issue: 1

Cite

APA Mahmood, L. S., Arslan, G., Sargin, I., Karakurt, S. (2024). Fluorescence Cell Imaging by Carbon Quantum Dots Derived from the Medicinal Plant Malva Sylvestris. Cumhuriyet Science Journal, 45(1), 73-79. https://doi.org/10.17776/csj.1333574