Yıl 2023,
Cilt: 44 Sayı: 2, 236 - 243, 30.06.2023
Tuba Reçber
,
Emirhan Nemutlu
,
Emine Aydın
,
Murat Cagan
,
Hanife Güler Dönmez
,
Sedef Kır
,
M.sinan Beksac
Kaynakça
- [1] Joan S., Terry L., The basics of brain development, Neuropsychol Rev, 20 (2010 ) 327-348.
- [2] Kaplan K.M,. Spivak J.M., Bendo J.A., Embryology of the spine and associated congenital abnormalities, The Spine Journal, 5 (5) (2005) 564-576.
- [3] Spirt B., Oliphant M., Gordon L., Fetal central nervous system abnormalities, Radiologic Clinics of North America, 28 (1) (1990) 59-73.
- [4] Aydın E., Tanacan A., Büyükeren M., Uçkan H., Yurdakök M., Beksaç M.S., Congenital central nervous system anomalies: Ten-year single center experience on a challenging issue in perinatal medicine, Journal of the Turkish German Gynecological Association, 20 (3) (2019) 170.
- [5] Tanacan A., Ozgen B., Fadiloglu E,. Unal C., Oguz K.K., Beksac M.S., Prenatal diagnosis of central nervous system abnormalities: Neurosonography versus fetal magnetic resonance imaging, European Journal of Obstetrics & Gynecology and Reproductive Biology, 250 (2020) 195-202.
- [6] Pulikkunnel S.T., Thomas S., Neural tube defects: pathogenesis and folate metabolism, The Journal of the Association of Physicians of India, 3 (2005) 127-135.
- [7] Obeid R., Oexle K., Rißmann A., Pietrzik K., Koletzko B., Folate status and health: challenges and opportunities, Journal of perinatal medicine, 44 (3) (2016) 261-268.
- [8] Greene N.D., Leung K.Y., Copp A.J., Inositol, neural tube closure and the prevention of neural tube defects, Birth defects research, 109 (2) (2017) 68-80.
- [9] Beaudin A.E., Stover P.J., Folate‐mediated one‐carbon metabolism and neural tube defects: Balancing genome synthesis and gene expression, Birth Defects Research Part C: Embryo Today: Reviews, 81 (3) (2007) 183-203.
- [10] Stokes B.A., Sabatino J.A., Zohn I.E., High levels of iron supplementation prevents neural tube defects in the Fpn1ffe mouse model, Birth defects research, 109 (2) (2017) 81-91.
- [11] Berihu B.A., Welderufael A.L., Berhe Y., Magana T., Mulugeta A., Asfaw S., Gebreselassie K., Maternal risk factors associated with neural tube defects in Tigray regional state of Ethiopia, Brain and Development, 41 (1) (2019) 11-18.
- [12] Welderufael A.L., Berihu B.A., Berhe Y., Magana T., Asfaw S., Gebreselassie K., Belay E., Kebede H., Mulugeta A., Nutritional status among women whose pregnancy outcome was afflicted with neural tube defects in Tigray region of Ethiopia, Brain and Development, 41 (5) (2019) 406-412.
- [13] Recber T., Orgul G., Aydın E., Tanacan A., Nemutlu E., Kır S., Beksac M.S., Metabolic infrastructure of pregnant women with methylenetetrahydrofolate reductase polymorphisms: A metabolomic analysis, Biomedical Chromatography, 34 (8) (2020) e4842.
- [14] Beksaç M.S., Durak B., Özkan Ö., Çakar A.N., Balci S., Karakaş Ü., Laleli Y., An artificial intelligent diagnostic system with neural networks to determine genetical disorders and fetal health by using maternal serum markers, European Journal of Obstetrics & Gynecology and Reproductive Biology, 59 (2) (1995) 131-136.
- [15] Nemutlu E., Orgul G,. Recber T., Aydin E., Ozkan E., Turgal M., Alikasifoglu M., Kir S., Beksac M.S., Metabolic infrastructure of pregnant women with trisomy 21 fetuses; metabolomic analysis, Zeitschrift für Geburtshilfe und Neonatologie, 223 (05) (2019) 297-303.
- [16] Monni G., Atzori L., Corda V., Dessolis F., Iuculano A., Hurt K.J., Murgia F. Metabolomics in prenatal medicine: A review, Frontiers in Medicine, 771 (2021).
- [17] Özkan E., Nemutlu E., Beksac M.S., Kır S., GC–MS analysis of seven metabolites for the screening of pregnant women with Down Syndrome fetuses, Journal of Pharmaceutical and Biomedical Analysis, 188 (2020) 113427.
- [18] González-Santamaría J., Villalba M., Busnadiego O., López-Olañeta M.M., Sandoval P., Snabel J., López-Cabrera M., Erler J.T., Hanemaaijer R., Lara-Pezzi E., Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction, Cardiovascular research, 109 (1) (2016) 67-78.
- [19] Holman R., Johnson S., Hatch T., A case of human linolenic acid deficiency involving neurological abnormalities, The American journal of clinical nutrition, 35 (3) (1982) 617-623.
- [20] Meng H., A case of human linolenic acid deficiency involving neurological abnormalities, The American journal of clinical nutrition, 37 (1) (1983) 157-159.
- [21] Basak S., Mallick R., Duttaroy A.K., Maternal docosahexaenoic acid status during pregnancy and its impact on infant neurodevelopment, Nutrients, 12 (12) (2020) 3615.
- [22] Nakajima S., Kunugi H., Lauric acid promotes neuronal maturation mediated by astrocytes in primary cortical cultures, Heliyon, 6 (5) (2020) e03892.
- [23] Paul B.D., Sbodio J.I., Snyder S.H., Cysteine metabolism in neuronal redox homeostasis, Trends in pharmacological sciences, 39 (5) (2018) 513-524.
- [24] Gutteridge J., Oxidative stress in neurobiology: An important role for iron. In: Oxidative Stress and Aging. edn.: Springer, (1995) 287-302.
- [25] Shaw W., Kassen E,. Chaves E., Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features, Clinical chemistry, 41 (8) (1995) 1094-1104.
- [26] Becker D.M., Kramer S., The neurological manifestations of porphyria: a review, Medicine, 56 (5) (1977) 411-423.
- [27] Kuberski Z., Behavior of oxalic acid in diseases of the central nervous system with regard to investigation of cerebrospinal fluid, Neurologia, neurochirurgia i psychiatria polska, 6 (5) (1956) 521-526.
- [28] Sciorta A., Blood and cerebrospinal fluid level of oxalic acid in schizophrenia, Rivista sperimentale di freniatria e medicina legale delle alienazioni mentali, 78 (2) (1954) 391-408.
- [29] Nicolaides P., Liebsch D., Dale N., Leonard J., Surtees R., Neurological outcome of patients with ornithine carbamoyltransferase deficiency, Archives of disease in childhood, 86 (1) (2002) 54-56.
- [30] Maffei M.E., 5-Hydroxytryptophan (5-HTP): Natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology, International journal of molecular sciences, 22 (1) (2020) 181.
- [31] Choremis K., Constantinides V., Nicolaides P., Pyruvic acid in the cerebrospinal fluid during various infectious diseases with central nervous system involvement. In: Annales paediatrici International review of pediatrics, (1953) 337-345.
- [32] Duinkerke S., Gabreëls F., Boerbooms A.T., Kok J., Renier W., Can determination of lactic acid and pyruvic acid in cerebrospinal fluid help in diagnosing central nervous system involvement in systemic lupus erythematosus?, Clinical neurology and neurosurgery, 85(4) (1983) 225-230.
- [33] Kugler W., Breme K., Laspe P., Muirhead H., Davies C., Winkler H., Schröter W., Lakomek M., Molecular basis of neurological dysfunction coupled with haemolytic anaemia in human glucose-6-phosphate isomerase (GPI) deficiency, Human genetics, 1998, 103 (4) (1998) 450-454.
- [34] Tiwari M., Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities, Genes & diseases, 4 (4) (2017) 196-203.
- [35] Argov Z., De Stefano N., Arnold D., Muscle high-energy phosphates in central nervous system disorders. The phosphorus MRS experience, The Italian Journal of Neurological Sciences, 18 (6) (1997) 353-357.
- [36] Tanianskii D.A., Jarzebska N., Birkenfeld A.L., O’Sullivan J.F., Rodionov R.N., Beta-aminoisobutyric acid as a novel regulator of carbohydrate and lipid metabolism, Nutrients, 11 (3) 2019) 524.
- [37] Wu N., Yang M., Gaur U., Xu H., Yao Y., Li D., Alpha-ketoglutarate: physiological functions and applications, Biomolecules & therapeutics, 24 (1) (2016) 1.
- [38] Moriconi E., Feraco A,. Marzolla V., Infante M., Lombardo M., Fabbri A., Caprio M., Neuroendocrine and metabolic effects of low-calorie and non-calorie sweeteners, Frontiers in Endocrinology, (2020) 444.
- [39] Stone T.W., Mackay G.M., Forrest C.M., Clark C.J., Darlington L.G., Tryptophan metabolites and brain disorders, (2003).
- [40] Mosiewicz J., Grzywa M., Disorders of sorbitol and myoinositol metabolism and the activity of sodium, potassium ATPase in the pathogenesis of peripheral neuropathy in patients with diabetes mellitus, Polski Tygodnik Lekarski (Warsaw, Poland: 1960), 47 (1-2) (1992) 56-58.
Metabolic Infrastructure of Pregnant Women with Fetuses Having Nervous System Abnormalities; Metabolomic Analysis
Yıl 2023,
Cilt: 44 Sayı: 2, 236 - 243, 30.06.2023
Tuba Reçber
,
Emirhan Nemutlu
,
Emine Aydın
,
Murat Cagan
,
Hanife Güler Dönmez
,
Sedef Kır
,
M.sinan Beksac
Öz
Central nervous system diseases are neurological disorders that affect the structure or function of the brain and spinal cord that make up the central nervous system. In this study, it was aimed to examine the impaired/altered metabolomic profiles of pregnant women carrying fetuses with nervous system abnormalities (NSA). The study group consisted of 30 normal pregnancies with normal fetuses (control group) and 8 pregnancies with fetuses having NSA (study group), as determined by prenatal screening and diagnosis as part of an antenatal care program. Metabolomic analyses were carried out using gas chromatography-mass spectrometry (GC-MS). GC-MS-based metabolomics analysis was able to identify 95 metabolites and 27 of them were statistically significant between the two groups (p<0.05). Moreover, the pathway analysis, performed with significantly altered metabolites, showed alteration in the alanine, aspartate, and glutamate metabolism, citrate cycle, aminoacyl t-RNA biosynthesis, and glutathione metabolism. Alanine, aspartate and glutamate metabolism, citrate cycle, aminoacyl t-RNA biosynthesis, and glutathione metabolism seem to be critical in the prenatal screening of NSAs. However, abnormality-specific studies are necessary for further recommendations.
Kaynakça
- [1] Joan S., Terry L., The basics of brain development, Neuropsychol Rev, 20 (2010 ) 327-348.
- [2] Kaplan K.M,. Spivak J.M., Bendo J.A., Embryology of the spine and associated congenital abnormalities, The Spine Journal, 5 (5) (2005) 564-576.
- [3] Spirt B., Oliphant M., Gordon L., Fetal central nervous system abnormalities, Radiologic Clinics of North America, 28 (1) (1990) 59-73.
- [4] Aydın E., Tanacan A., Büyükeren M., Uçkan H., Yurdakök M., Beksaç M.S., Congenital central nervous system anomalies: Ten-year single center experience on a challenging issue in perinatal medicine, Journal of the Turkish German Gynecological Association, 20 (3) (2019) 170.
- [5] Tanacan A., Ozgen B., Fadiloglu E,. Unal C., Oguz K.K., Beksac M.S., Prenatal diagnosis of central nervous system abnormalities: Neurosonography versus fetal magnetic resonance imaging, European Journal of Obstetrics & Gynecology and Reproductive Biology, 250 (2020) 195-202.
- [6] Pulikkunnel S.T., Thomas S., Neural tube defects: pathogenesis and folate metabolism, The Journal of the Association of Physicians of India, 3 (2005) 127-135.
- [7] Obeid R., Oexle K., Rißmann A., Pietrzik K., Koletzko B., Folate status and health: challenges and opportunities, Journal of perinatal medicine, 44 (3) (2016) 261-268.
- [8] Greene N.D., Leung K.Y., Copp A.J., Inositol, neural tube closure and the prevention of neural tube defects, Birth defects research, 109 (2) (2017) 68-80.
- [9] Beaudin A.E., Stover P.J., Folate‐mediated one‐carbon metabolism and neural tube defects: Balancing genome synthesis and gene expression, Birth Defects Research Part C: Embryo Today: Reviews, 81 (3) (2007) 183-203.
- [10] Stokes B.A., Sabatino J.A., Zohn I.E., High levels of iron supplementation prevents neural tube defects in the Fpn1ffe mouse model, Birth defects research, 109 (2) (2017) 81-91.
- [11] Berihu B.A., Welderufael A.L., Berhe Y., Magana T., Mulugeta A., Asfaw S., Gebreselassie K., Maternal risk factors associated with neural tube defects in Tigray regional state of Ethiopia, Brain and Development, 41 (1) (2019) 11-18.
- [12] Welderufael A.L., Berihu B.A., Berhe Y., Magana T., Asfaw S., Gebreselassie K., Belay E., Kebede H., Mulugeta A., Nutritional status among women whose pregnancy outcome was afflicted with neural tube defects in Tigray region of Ethiopia, Brain and Development, 41 (5) (2019) 406-412.
- [13] Recber T., Orgul G., Aydın E., Tanacan A., Nemutlu E., Kır S., Beksac M.S., Metabolic infrastructure of pregnant women with methylenetetrahydrofolate reductase polymorphisms: A metabolomic analysis, Biomedical Chromatography, 34 (8) (2020) e4842.
- [14] Beksaç M.S., Durak B., Özkan Ö., Çakar A.N., Balci S., Karakaş Ü., Laleli Y., An artificial intelligent diagnostic system with neural networks to determine genetical disorders and fetal health by using maternal serum markers, European Journal of Obstetrics & Gynecology and Reproductive Biology, 59 (2) (1995) 131-136.
- [15] Nemutlu E., Orgul G,. Recber T., Aydin E., Ozkan E., Turgal M., Alikasifoglu M., Kir S., Beksac M.S., Metabolic infrastructure of pregnant women with trisomy 21 fetuses; metabolomic analysis, Zeitschrift für Geburtshilfe und Neonatologie, 223 (05) (2019) 297-303.
- [16] Monni G., Atzori L., Corda V., Dessolis F., Iuculano A., Hurt K.J., Murgia F. Metabolomics in prenatal medicine: A review, Frontiers in Medicine, 771 (2021).
- [17] Özkan E., Nemutlu E., Beksac M.S., Kır S., GC–MS analysis of seven metabolites for the screening of pregnant women with Down Syndrome fetuses, Journal of Pharmaceutical and Biomedical Analysis, 188 (2020) 113427.
- [18] González-Santamaría J., Villalba M., Busnadiego O., López-Olañeta M.M., Sandoval P., Snabel J., López-Cabrera M., Erler J.T., Hanemaaijer R., Lara-Pezzi E., Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction, Cardiovascular research, 109 (1) (2016) 67-78.
- [19] Holman R., Johnson S., Hatch T., A case of human linolenic acid deficiency involving neurological abnormalities, The American journal of clinical nutrition, 35 (3) (1982) 617-623.
- [20] Meng H., A case of human linolenic acid deficiency involving neurological abnormalities, The American journal of clinical nutrition, 37 (1) (1983) 157-159.
- [21] Basak S., Mallick R., Duttaroy A.K., Maternal docosahexaenoic acid status during pregnancy and its impact on infant neurodevelopment, Nutrients, 12 (12) (2020) 3615.
- [22] Nakajima S., Kunugi H., Lauric acid promotes neuronal maturation mediated by astrocytes in primary cortical cultures, Heliyon, 6 (5) (2020) e03892.
- [23] Paul B.D., Sbodio J.I., Snyder S.H., Cysteine metabolism in neuronal redox homeostasis, Trends in pharmacological sciences, 39 (5) (2018) 513-524.
- [24] Gutteridge J., Oxidative stress in neurobiology: An important role for iron. In: Oxidative Stress and Aging. edn.: Springer, (1995) 287-302.
- [25] Shaw W., Kassen E,. Chaves E., Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features, Clinical chemistry, 41 (8) (1995) 1094-1104.
- [26] Becker D.M., Kramer S., The neurological manifestations of porphyria: a review, Medicine, 56 (5) (1977) 411-423.
- [27] Kuberski Z., Behavior of oxalic acid in diseases of the central nervous system with regard to investigation of cerebrospinal fluid, Neurologia, neurochirurgia i psychiatria polska, 6 (5) (1956) 521-526.
- [28] Sciorta A., Blood and cerebrospinal fluid level of oxalic acid in schizophrenia, Rivista sperimentale di freniatria e medicina legale delle alienazioni mentali, 78 (2) (1954) 391-408.
- [29] Nicolaides P., Liebsch D., Dale N., Leonard J., Surtees R., Neurological outcome of patients with ornithine carbamoyltransferase deficiency, Archives of disease in childhood, 86 (1) (2002) 54-56.
- [30] Maffei M.E., 5-Hydroxytryptophan (5-HTP): Natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology, International journal of molecular sciences, 22 (1) (2020) 181.
- [31] Choremis K., Constantinides V., Nicolaides P., Pyruvic acid in the cerebrospinal fluid during various infectious diseases with central nervous system involvement. In: Annales paediatrici International review of pediatrics, (1953) 337-345.
- [32] Duinkerke S., Gabreëls F., Boerbooms A.T., Kok J., Renier W., Can determination of lactic acid and pyruvic acid in cerebrospinal fluid help in diagnosing central nervous system involvement in systemic lupus erythematosus?, Clinical neurology and neurosurgery, 85(4) (1983) 225-230.
- [33] Kugler W., Breme K., Laspe P., Muirhead H., Davies C., Winkler H., Schröter W., Lakomek M., Molecular basis of neurological dysfunction coupled with haemolytic anaemia in human glucose-6-phosphate isomerase (GPI) deficiency, Human genetics, 1998, 103 (4) (1998) 450-454.
- [34] Tiwari M., Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities, Genes & diseases, 4 (4) (2017) 196-203.
- [35] Argov Z., De Stefano N., Arnold D., Muscle high-energy phosphates in central nervous system disorders. The phosphorus MRS experience, The Italian Journal of Neurological Sciences, 18 (6) (1997) 353-357.
- [36] Tanianskii D.A., Jarzebska N., Birkenfeld A.L., O’Sullivan J.F., Rodionov R.N., Beta-aminoisobutyric acid as a novel regulator of carbohydrate and lipid metabolism, Nutrients, 11 (3) 2019) 524.
- [37] Wu N., Yang M., Gaur U., Xu H., Yao Y., Li D., Alpha-ketoglutarate: physiological functions and applications, Biomolecules & therapeutics, 24 (1) (2016) 1.
- [38] Moriconi E., Feraco A,. Marzolla V., Infante M., Lombardo M., Fabbri A., Caprio M., Neuroendocrine and metabolic effects of low-calorie and non-calorie sweeteners, Frontiers in Endocrinology, (2020) 444.
- [39] Stone T.W., Mackay G.M., Forrest C.M., Clark C.J., Darlington L.G., Tryptophan metabolites and brain disorders, (2003).
- [40] Mosiewicz J., Grzywa M., Disorders of sorbitol and myoinositol metabolism and the activity of sodium, potassium ATPase in the pathogenesis of peripheral neuropathy in patients with diabetes mellitus, Polski Tygodnik Lekarski (Warsaw, Poland: 1960), 47 (1-2) (1992) 56-58.