Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 44 Sayı: 2, 396 - 402, 30.06.2023
https://doi.org/10.17776/csj.1242731

Öz

Kaynakça

  • [1] Dullweber T., Rau U., Contreras M. A., Noufi R., Schock H. W., Photogeneration and carrier recombination in graded gap Cu (In, Ga) Se/sub 2/solar cells, IEEE Trans. Electron Devices. 47 (2000) 2249–2254.
  • [2] Han S. H., Hermann A. M., Hasoon F. S., Al-Thani H. A., Levi D. H., Effect of Cu deficiency on the optical properties and electronic structure of CuInSe 2 and CuIn 0.8 Ga 0.2 Se 2 determined by spectroscopic ellipsometry, Appl. Phys. Lett. 85 (2004) 576–578.
  • [3] Huang Y., Tang Y., Yuan W., Wang Q., Zhang S., Influence of surface-modified Mo back contact on post-selenized Cu (In, Ga) Se2 thin films, Mater. Sci. Semicond. Process. 57 (2017) 227–232.
  • [4] Ramanujam J., Singh U. P., Copper indium gallium selenide based solar cells–a review, Energy Environ. Sci. 10 (2017) 1306–1319.
  • [5] Yin L., Zhang K., Luo H., Cheng G., Ma X., Xiong Z., Xiao X., Highly efficient graphene-based Cu (In, Ga) Se 2 solar cells with large active area, Nanoscale. 6 (2014) 10879–10886.
  • [6] Jung S., Ahn S. J., Yun J. H., Gwak J., Kim D., Yoon K., Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique, Curr. Appl. Phys. 10 (2010) 990–996.
  • [7] Jackson P., Hariskos D., Wuerz R., Kiowski O., Bauer A., Friedlmeier T. M., Powalla M., Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%, Phys. Status Solidi (RRL)–Rapid Res. Lett. 9 (2015) 28–31.
  • [8] Huang P. C., Sung C. C., Chen J. H., Hsiao R. C., Hsu C. Y., Effect of selenization and sulfurization on the structure and performance of CIGS solar cell, J. Mater. Sci. Mater. Electron. 29 (2018) 1444–1450.
  • [9] Liang H., Avachat U., Liu W., Van Duren J., Le M., CIGS formation by high temperature selenization of metal precursors in H2Se atmosphere, Solid. State. Electron. 76 (2012) 95–100.
  • [10] Chen C. H., Lin T. Y., Hsu C. H., Wei S. Y., Lai C. H., Comprehensive characterization of Cu-rich Cu (In, Ga) Se2 absorbers prepared by one-step sputtering process, Thin Solid Films. 535 (2013) 122–126.
  • [11] Ouyang L., Zhao M., Zhuang D., Han J., Gao Z., Guo L., Li X., Sun R., Cao M., Annealing treatment of Cu (In, Ga) Se2 absorbers prepared by sputtering a quaternary target for 13.5% conversion efficiency device, Sol. Energy. 118 (2015) 375–383.
  • [12] Wang Q., Zhao Z., Li H., Zhuang J., Ma Z., Yang Y., Zhang L., Zhang Y., One-step RF magnetron sputtering method for preparing Cu (In, Ga) Se2 solar cells, J. Mater. Sci. Mater. Electron. 29 (2018) 11755–11762.
  • [13] Yan Y., Li S., Ou Y., Ji Y., Yan C., Liu L., Yu Z., Zhao Y., Structure and properties of CIGS films based on one-stage RF-sputtering process at low substrate temperature, J. Mod. Transp. 22 (2014) 37–44.
  • [14] Zhang L., Yu Y., Yu J., Wei Y., Effects of annealing atmosphere on the performance of Cu (InGa) Se2 films sputtered from quaternary targets, R. Soc. Open Sci. 7 (2020) 200662.
  • [15] Chen C. H., Shih W. C., Chien C. Y., Hsu C. H., Wu Y. H., Lai C. H., A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga) Se2 absorbers without extra Se supply, Sol. Energy Mater. Sol. Cells. 103 (2012) 25–29.
  • [16] Wang Y. H., Ho P. H., Huang W. C., Tu L. H., Chang H. F., Cai C. H., Lai C. H., Engineering a Ga-Gradient by One-Step Sputtering to Achieve Over 15% Efficiency of Cu (In, Ga) Se2 Flexible Solar Cells without Post-selenization, ACS Appl. Mater. Interfaces. 12 (2020) 28320–28328.
  • [17] Frantz J, A., Bekele R. Y., Nguyen V. Q., Sanghera J. S., Bruce A., Frolov S. V., Cyrus M., Aggarwal I. D., Cu (In, Ga) Se2 thin films and devices sputtered from a single target without additional selenization, Thin Solid Films. 519 (2011) 7763–7765.
  • [18] Lin T. Y., Lai C.H., Grading G., CIGS solar cell by one-step sputtering from a quaternary target without post-selenization, in: 2015 IEEE 42nd Photovolt. Spec. Conf., IEEE, 2015: pp. 1–4.
  • [19] Chen J., Shen H., Zhai Z., Li J., Wang W., Shang H., Li Y., Effect of substrate temperature and post-annealing on the properties of CIGS thin films deposited using e-beam evaporation, J. Phys. D. Appl. Phys. 49 (2016) 495601.
  • [20] Yan L., Bai Y., Yang B., Chen N., Tan Z., Hayat T., Alsaedi A., Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band, Curr. Appl. Phys. 18 (2018) 484–490.
  • [21] Keles F., Cansizoglu H., Badraddin E. O., Brozak M. P., Watanabe F., Karabacak T., HIPS-GLAD core shell nanorod array photodetectors with enhanced photocurrent and reduced dark current, Mater. Res. Express. 3 (2016) 105028.
  • [22] Keles F., Badradeen E., Karabacak T., Self-anti-reflective density-modulated thin films by HIPS technique, Nanotechnology. 28 (2017) 335703.
  • [23] Badradeen E., Brozak M, Keles F., Al-Mayalee K., Karabacak T., High performance flexible copper indium gallium selenide core–shell nanorod array photodetectors, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 35 (2017) 03E112.
  • [24] Nakano T., Baba S., Gas pressure effects on thickness uniformity and circumvented deposition during sputter deposition process, Vacuum. 80 (2006) 647–649. [25] Liu G. S., Li H. N., Shen X. Y., Hu Z. Q., Hao H. S., Effect of Substrate Temperature on One-Step Magnetron-Sputtered Cu (In, Ga) Se2 Thin Films for Solar Cells, in: Appl. Mech. Mater., Trans Tech Publ, 2013: pp. 703–707.
  • [26] Zhang H. X., Hong R. J., CIGS absorbing layers prepared by RF magnetron sputtering from a single quaternary target, Ceram. Int. 42 (2016) 14543–14547.
  • [27] Witte W., Kniese R., Powalla M., Raman investigations of Cu (In, Ga) Se2 thin films with various copper contents, Thin Solid Films. 517 (2008) 867–869.
  • [28] Roy S., Guha P., Kundu S. N., Hanzawa H., Chaudhuri S., Pal A. K., Characterization of Cu (In, Ga) Se2 films by Raman scattering, Mater. Chem. Phys. 73 (2002) 24–30.
  • [29] Huang X., Miao X., Yu N., Guan X., Effects of deposition profiles on RF-sputtered Cu (In, Ga)Se 2 films at low substrate temperature, Appl. Surf. Sci. 287 (2013) 257–262.
  • [30] Shi J. H., Li Z. Q., Zhang D. W., Liu Q. Q., Sun Z., Huang S. M., Fabrication of Cu (In, Ga) Se2 thin films by sputtering from a single quaternary chalcogenide target, Prog. Photovoltaics Res. Appl. 19 (2011) 160–164.
  • [31] Nagaoka A., Nose Y., Miyake H., Scarpulla M. A., Yoshino K., (2015). Solution growth of chalcopyrite compounds single crystal. Renewable Energy, 79, 127-130.
  • [32] Ruiz C. M., Fontané X., Fairbrother A., Izquierdo-Roca V., Broussillou C., Bodnar Bermudez V. (2012, June). Developing Raman scattering as quality control technique: Correlation with presence of electronic defects in CIGS-based devices. In 2012 38th IEEE Photovoltaic Specialists Conference (pp. 000455-000458). IEEE.
  • [33] Yu Z., Yan Y., Li S., Zhang Y., Yan C., Liu L., Zhang Y., Zhao Y., Significant effect of substrate temperature on the phase structure, optical and electrical properties of RF sputtered CIGS films, Appl. Surf. Sci. 264 (2013) 197–201.
  • [34] Dhanaraj A., Das K., Keller J. M., A Study of The Optical Band Gap Energy and Urbach Energy of Fullerene (C60) Doped PMMA Nanocomposites, AIP Conference Proceedings. 2270 (2020) 110040.
  • [35] Mankoshi M. A. K., Mustafa F. I., Hintaw N. J., Effects of Annealing Temperature on Structural and Optical Properties of CIGS Thin Films for Using in Solar Cell Applications, in: J. Phys. Conf. Ser., IOP Publishing, 2018: p. 12019.
  • [36] Chandramohan M., Velumani S., Venkatachalam T., Experimental and theoretical investigations of structural and optical properties of CIGS thin films, Mater. Sci. Eng. B. 174 (2010) 205–208.
  • [37] Wang H., Zhang Y., Kou X. L., Cai Y. A., Liu W., Yu T., Pang J. B., Li C. J., Sun Y., Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process, Semicond. Sci. Technol. 25 (2010) 55007.

Influence of The Substrate-Target Angle and Sputter Temperature On The Properties of CIGS Thin Films Sputtered From Single Quaternary Target

Yıl 2023, Cilt: 44 Sayı: 2, 396 - 402, 30.06.2023
https://doi.org/10.17776/csj.1242731

Öz

In this study, Copper Indium Gallium Selenide (CIGS) thin films were successfully sputtered from a single quaternary target onto soda lime glass substrates. The effect of the incident angle of target atoms and sputter temperature on the properties of the films were examined using various techniques. It was found that a higher incident angle of target atoms resulted in a columnar microstructure, while a lower angle produced a solid film. The columnar structure showed improved optical absorption compared to the solid film. The sputter temperature had a greater effect on the crystalline properties of the films, with all films except those sputtered at room temperature showing polycrystalline formation. The films displayed a chalcopyrite structure and acceptable band gaps in the range of 1.1-1.3 eV, regardless of the incident angle and sputter temperature. These results indicate that the optical properties of CIGS thin films can be improved by a small increase in the incident angle of target atoms, without adversely affecting the structural and crystalline properties.

Kaynakça

  • [1] Dullweber T., Rau U., Contreras M. A., Noufi R., Schock H. W., Photogeneration and carrier recombination in graded gap Cu (In, Ga) Se/sub 2/solar cells, IEEE Trans. Electron Devices. 47 (2000) 2249–2254.
  • [2] Han S. H., Hermann A. M., Hasoon F. S., Al-Thani H. A., Levi D. H., Effect of Cu deficiency on the optical properties and electronic structure of CuInSe 2 and CuIn 0.8 Ga 0.2 Se 2 determined by spectroscopic ellipsometry, Appl. Phys. Lett. 85 (2004) 576–578.
  • [3] Huang Y., Tang Y., Yuan W., Wang Q., Zhang S., Influence of surface-modified Mo back contact on post-selenized Cu (In, Ga) Se2 thin films, Mater. Sci. Semicond. Process. 57 (2017) 227–232.
  • [4] Ramanujam J., Singh U. P., Copper indium gallium selenide based solar cells–a review, Energy Environ. Sci. 10 (2017) 1306–1319.
  • [5] Yin L., Zhang K., Luo H., Cheng G., Ma X., Xiong Z., Xiao X., Highly efficient graphene-based Cu (In, Ga) Se 2 solar cells with large active area, Nanoscale. 6 (2014) 10879–10886.
  • [6] Jung S., Ahn S. J., Yun J. H., Gwak J., Kim D., Yoon K., Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique, Curr. Appl. Phys. 10 (2010) 990–996.
  • [7] Jackson P., Hariskos D., Wuerz R., Kiowski O., Bauer A., Friedlmeier T. M., Powalla M., Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%, Phys. Status Solidi (RRL)–Rapid Res. Lett. 9 (2015) 28–31.
  • [8] Huang P. C., Sung C. C., Chen J. H., Hsiao R. C., Hsu C. Y., Effect of selenization and sulfurization on the structure and performance of CIGS solar cell, J. Mater. Sci. Mater. Electron. 29 (2018) 1444–1450.
  • [9] Liang H., Avachat U., Liu W., Van Duren J., Le M., CIGS formation by high temperature selenization of metal precursors in H2Se atmosphere, Solid. State. Electron. 76 (2012) 95–100.
  • [10] Chen C. H., Lin T. Y., Hsu C. H., Wei S. Y., Lai C. H., Comprehensive characterization of Cu-rich Cu (In, Ga) Se2 absorbers prepared by one-step sputtering process, Thin Solid Films. 535 (2013) 122–126.
  • [11] Ouyang L., Zhao M., Zhuang D., Han J., Gao Z., Guo L., Li X., Sun R., Cao M., Annealing treatment of Cu (In, Ga) Se2 absorbers prepared by sputtering a quaternary target for 13.5% conversion efficiency device, Sol. Energy. 118 (2015) 375–383.
  • [12] Wang Q., Zhao Z., Li H., Zhuang J., Ma Z., Yang Y., Zhang L., Zhang Y., One-step RF magnetron sputtering method for preparing Cu (In, Ga) Se2 solar cells, J. Mater. Sci. Mater. Electron. 29 (2018) 11755–11762.
  • [13] Yan Y., Li S., Ou Y., Ji Y., Yan C., Liu L., Yu Z., Zhao Y., Structure and properties of CIGS films based on one-stage RF-sputtering process at low substrate temperature, J. Mod. Transp. 22 (2014) 37–44.
  • [14] Zhang L., Yu Y., Yu J., Wei Y., Effects of annealing atmosphere on the performance of Cu (InGa) Se2 films sputtered from quaternary targets, R. Soc. Open Sci. 7 (2020) 200662.
  • [15] Chen C. H., Shih W. C., Chien C. Y., Hsu C. H., Wu Y. H., Lai C. H., A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga) Se2 absorbers without extra Se supply, Sol. Energy Mater. Sol. Cells. 103 (2012) 25–29.
  • [16] Wang Y. H., Ho P. H., Huang W. C., Tu L. H., Chang H. F., Cai C. H., Lai C. H., Engineering a Ga-Gradient by One-Step Sputtering to Achieve Over 15% Efficiency of Cu (In, Ga) Se2 Flexible Solar Cells without Post-selenization, ACS Appl. Mater. Interfaces. 12 (2020) 28320–28328.
  • [17] Frantz J, A., Bekele R. Y., Nguyen V. Q., Sanghera J. S., Bruce A., Frolov S. V., Cyrus M., Aggarwal I. D., Cu (In, Ga) Se2 thin films and devices sputtered from a single target without additional selenization, Thin Solid Films. 519 (2011) 7763–7765.
  • [18] Lin T. Y., Lai C.H., Grading G., CIGS solar cell by one-step sputtering from a quaternary target without post-selenization, in: 2015 IEEE 42nd Photovolt. Spec. Conf., IEEE, 2015: pp. 1–4.
  • [19] Chen J., Shen H., Zhai Z., Li J., Wang W., Shang H., Li Y., Effect of substrate temperature and post-annealing on the properties of CIGS thin films deposited using e-beam evaporation, J. Phys. D. Appl. Phys. 49 (2016) 495601.
  • [20] Yan L., Bai Y., Yang B., Chen N., Tan Z., Hayat T., Alsaedi A., Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band, Curr. Appl. Phys. 18 (2018) 484–490.
  • [21] Keles F., Cansizoglu H., Badraddin E. O., Brozak M. P., Watanabe F., Karabacak T., HIPS-GLAD core shell nanorod array photodetectors with enhanced photocurrent and reduced dark current, Mater. Res. Express. 3 (2016) 105028.
  • [22] Keles F., Badradeen E., Karabacak T., Self-anti-reflective density-modulated thin films by HIPS technique, Nanotechnology. 28 (2017) 335703.
  • [23] Badradeen E., Brozak M, Keles F., Al-Mayalee K., Karabacak T., High performance flexible copper indium gallium selenide core–shell nanorod array photodetectors, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 35 (2017) 03E112.
  • [24] Nakano T., Baba S., Gas pressure effects on thickness uniformity and circumvented deposition during sputter deposition process, Vacuum. 80 (2006) 647–649. [25] Liu G. S., Li H. N., Shen X. Y., Hu Z. Q., Hao H. S., Effect of Substrate Temperature on One-Step Magnetron-Sputtered Cu (In, Ga) Se2 Thin Films for Solar Cells, in: Appl. Mech. Mater., Trans Tech Publ, 2013: pp. 703–707.
  • [26] Zhang H. X., Hong R. J., CIGS absorbing layers prepared by RF magnetron sputtering from a single quaternary target, Ceram. Int. 42 (2016) 14543–14547.
  • [27] Witte W., Kniese R., Powalla M., Raman investigations of Cu (In, Ga) Se2 thin films with various copper contents, Thin Solid Films. 517 (2008) 867–869.
  • [28] Roy S., Guha P., Kundu S. N., Hanzawa H., Chaudhuri S., Pal A. K., Characterization of Cu (In, Ga) Se2 films by Raman scattering, Mater. Chem. Phys. 73 (2002) 24–30.
  • [29] Huang X., Miao X., Yu N., Guan X., Effects of deposition profiles on RF-sputtered Cu (In, Ga)Se 2 films at low substrate temperature, Appl. Surf. Sci. 287 (2013) 257–262.
  • [30] Shi J. H., Li Z. Q., Zhang D. W., Liu Q. Q., Sun Z., Huang S. M., Fabrication of Cu (In, Ga) Se2 thin films by sputtering from a single quaternary chalcogenide target, Prog. Photovoltaics Res. Appl. 19 (2011) 160–164.
  • [31] Nagaoka A., Nose Y., Miyake H., Scarpulla M. A., Yoshino K., (2015). Solution growth of chalcopyrite compounds single crystal. Renewable Energy, 79, 127-130.
  • [32] Ruiz C. M., Fontané X., Fairbrother A., Izquierdo-Roca V., Broussillou C., Bodnar Bermudez V. (2012, June). Developing Raman scattering as quality control technique: Correlation with presence of electronic defects in CIGS-based devices. In 2012 38th IEEE Photovoltaic Specialists Conference (pp. 000455-000458). IEEE.
  • [33] Yu Z., Yan Y., Li S., Zhang Y., Yan C., Liu L., Zhang Y., Zhao Y., Significant effect of substrate temperature on the phase structure, optical and electrical properties of RF sputtered CIGS films, Appl. Surf. Sci. 264 (2013) 197–201.
  • [34] Dhanaraj A., Das K., Keller J. M., A Study of The Optical Band Gap Energy and Urbach Energy of Fullerene (C60) Doped PMMA Nanocomposites, AIP Conference Proceedings. 2270 (2020) 110040.
  • [35] Mankoshi M. A. K., Mustafa F. I., Hintaw N. J., Effects of Annealing Temperature on Structural and Optical Properties of CIGS Thin Films for Using in Solar Cell Applications, in: J. Phys. Conf. Ser., IOP Publishing, 2018: p. 12019.
  • [36] Chandramohan M., Velumani S., Venkatachalam T., Experimental and theoretical investigations of structural and optical properties of CIGS thin films, Mater. Sci. Eng. B. 174 (2010) 205–208.
  • [37] Wang H., Zhang Y., Kou X. L., Cai Y. A., Liu W., Yu T., Pang J. B., Li C. J., Sun Y., Effect of substrate temperature on the structural and electrical properties of CIGS films based on the one-stage co-evaporation process, Semicond. Sci. Technol. 25 (2010) 55007.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer), Malzeme Üretim Teknolojileri
Bölüm Natural Sciences
Yazarlar

Filiz Keleş 0000-0003-4548-489X

Furkan Güçlüer 0000-0002-8708-8994

Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 31 Ocak 2023
Kabul Tarihi 6 Nisan 2023
Yayımlandığı Sayı Yıl 2023Cilt: 44 Sayı: 2

Kaynak Göster

APA Keleş, F., & Güçlüer, F. (2023). Influence of The Substrate-Target Angle and Sputter Temperature On The Properties of CIGS Thin Films Sputtered From Single Quaternary Target. Cumhuriyet Science Journal, 44(2), 396-402. https://doi.org/10.17776/csj.1242731