Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 43 Sayı: 4, 752 - 759, 27.12.2022
https://doi.org/10.17776/csj.1180411

Öz

Kaynakça

  • [1] World Nuclear Association. Radioisotopes in Industry. Available at: https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-industry.aspx. Retrieved March 26, 2022.
  • [2] Das T., Pillai M.R.A., Options to Meet the Future Global Demand of Radionuclides for Radionuclide Therapy, Nucl. Med. Biol., 40 (1) (2013) 23-32.
  • [3] Akkoyun S., Kaya H., Estimations of Cross-Sections for Photonuclear Reaction on Calcium Isotopes by Artificial Neural Network, Sakarya University Journal of Science, 24 (5) (2020) 1115-1120.
  • [4] Özdoğan H., Şekerci M., Kaplan A., An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of 50,52,53,54Cr(α,x) Reactions, Phys. At. Nucl., 83 (6) (2020) 820-827.
  • [5] Şekerci M., Özdoğan H., Kaplan A., An Investigation of Effects of Level Density Models and Gamma Ray Strength Functions on Cross-Section Calculations for the Production of 90Y, 153Sm, 169Er, 177Lu and 186Re Therapeutic Radioisotopes via (n,g) Reactions, Radiochim. Acta, 108 (1) (2020) 11-17.
  • [6] Şekerci M., Theoretical Cross-Section Calculations for the (α,n) and (α,2n) Reactions on 46Ti, 50Cr, 54Fe, and 93Nb Isotopes, Mosc. Univ. Phys. Bull., 75 (2) (2020) 123-132.
  • [7] Akkoyun S., Bayram T., Production Cross-Section of 51Cr Radioisotope Using Artificial Neural Networks, Turkish Journal of Science and Health, 2 (1) (2021) 133-138.
  • [8] Özdoğan H., Üncü Y.A., Karaman O., Şekerci M., Kaplan A., Estimations of Giant Dipole Resonance Parameters Using Artificial Neural Network, Appl. Radiat. Isot., 169, (2021) 109581.
  • [9] Yiğit M., Study of Cross Sections for (n,p) Reactions on Hf, Ta and W Isotopes, Appl. Radiat. Isot., 174, (2021) 109779.
  • [10] Stöcklin G., Qaim S.M., Rösch F., The Impact of Radioactivity on Medicine Metallic, Radiochim. Acta, 70/71 (1995) 249-272.
  • [11] Kaplan A, Sarpün İ.H., Aydın A., Tel E., Çapalı V., Özdoğan H., (γ,2n) Reaction Cross-Section Calculations of Several Even-Even Lanthanide Nuclei Using Different Level Density Models, Phys. At. Nucl., 78 (2015) 53-64.
  • [12] Özdoğan H., Şekerci M., Kaplan A., Investigation of Gamma Strength Functions and Level Density Models Effects on Photon Induced Reaction Cross–Section Calculations for the Fusion Structural Materials 46,50Ti, 51V, 58Ni and 63Cu”. Appl. Radiat. Isot., 143 (2019) 6-10.
  • [13] Şekerci M., An Investigation of the Effects of Level Density Models and Alpha Optical Model Potentials on the Cross-Section Calculations for the Production of the Radionuclides 62Cu, 67Ga, 86Y and 89Zr via Some Alpha Induced Reactions, Radiochim. Acta, 108 (6) (2019) 459-467.
  • [14] Şekerci M., Özdoğan H., Kaplan A., Investigation on the Different Production Routes of 67Ga Radioisotope by Using Different Level Density Models, Mosc. Univ. Phys. Bull., 74 (2019) 277-281.
  • [15] Özdoğan H., Üncü Y.A., Şekerci M., Kaplan A., Estimations of Level Density Parameters by Using Artificial Neural Network for Phenomenological Level Density Models, Appl. Radiat. Isot., 169 (2021) 109583.
  • [16] Gülümser T., Kaplan A., A Theoretical Study on the Production Cross–Section Calculations for 24Na Medical Isotope, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14 (2) (2021) 802-813.
  • [17] Sarpün İ.H., Özdoğan H., Taşdöven K., Yalim H.A., Kaplan A., Theoretical Photoneutron Cross-Section Calculations on Osmium Isotopes by Talys And Empire Codes, Mod. Phys. Lett. A., 34 (26) (2019) 1950210.
  • [18] Şekerci M., Özdoğan H., Kaplan A., Level Density Model Effects on the Production Cross-Section Calculations of Some Medical Isotopes via (α,xn) Reactions where x=1–3, Mod. Phys. Lett. A., 35 (24) (2020) 2050202.
  • [19] Özdoğan H., Şekerci̇ M., Kaplan A., Photo-Neutron Cross-Section Calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with Newly Obtained Giant Dipole Resonance Parameters, Appl. Radiat. Isot., 165 (2020) 109356.
  • [20] Özdoğan H., Estimation of (n,p) Reaction Cross Sections at 14.5±0.5  MeV Neutron Energy by Using Artificial Neural Network, Appl. Radiat. Isot., 170 (2021) 109584.
  • [21] Weeks M.E., The discovery of the elements. XVII. The halogen family, J. Chem. Educ., 9 (11) (1932) 1915.
  • [22] Greenwood N.N., Earnshaw A., Chemistry of the Elements. 2nd ed. United Kingdom: Oxford, (1997) 1-1364.
  • [23] Lide, D.R. (ed)., CRC Handbook of Chemistry and Physics. 85th ed. Florida, (2004) 1-2712.
  • [24] Rowland D.J., McCarthy T.J., Welch M.J., Radiobromine for Imaging and Therapy. In: Welch M.J., Redvanly C.S., (Eds). Handbook of Radiopharmaceuticals: Radiochemistry and Applications. John Wiley & Sons (2002) 441-465.
  • [25] Wilbur D.S., Adam M.J., Radiobromine and Radioiodine for Medical Applications, Radiochim. Acta, 107 (9-11) (2019) 1033–1063.
  • [26] Koning A., Hilaire S., Goriely S., TALYS–1.95 A Nuclear Reaction Program, User Manual. 1st ed. NRG, The Netherlands (2019).
  • [27] Daehnick W.W., Childs J.D., Vrcelj Z., Global Optical Model Potential for Elastic Deuteron Scattering from 12 to 90 MeV, Phys. Rev. C., 21 (1980) 2253–2274.
  • [28] Bojowald J., Machner H., Nann H., Oelert W., Rogge M., Turek P., Elastic Deuteron Scattering and Optical Model Parameters at Energies up to 100 MeV, Phys. Rev. C., 38 (1988) 1153–1163.
  • [29] Han Y., Shi Y., Shen Q., Deuteron Global Optical Model Potential for Energies up to 200 Mev, Phys. Rev. C., 74 (2006) 044615.
  • [30] An H., Cai C., Global Deuteron Optical Model Potential for the Energy Range up to 183 MeV, Phys. Rev. C., 73 (2006) 054605.
  • [31] McFadden L., Satchler G.R., Optical-Model Analysis of the Scattering of 24.7 MeV Alpha Particles, Nucl. Phys., 84 (1966) 177–200.
  • [32] Demetriou P., Grama C., Goriely S., Improved Global α-optical Model Potentials at Low Energies, Nucl. Phys. A., 707 (2002) 253–276.
  • [33] Avrigeanu V., Avrigeanu M., Mănăilescu C., Further Explorations of the α-particle Optical Model Potential at Low Energies for the Mass Range A≈45–209, Phys. Rev. C., 90 (2014) 044612.
  • [34] Nolte M., Machner H., Bojowald J., Global Optical Potential for α particles with Energies Above 80 MeV, Phys. Rev. C., 36 (1987) 1312.
  • [35] Avrigeanu V., Hodgson P.E., Avrigeanu M., Global Optical Potentials for Emitted Alpha Particles, Phys. Rev. C., 49 (1994) 2136.
  • [36] Alabyad M., Mohamed G.Y., Hassan H.E., Takács S., Ditrói F., Experimental Measurements and Theoretical Calculations for Proton, Deuteron and α-Particle Induced Nuclear Reactions on Calcium: Special Relevance to the Production of 43,44Sc, J. Radioanal. Nucl. Chem., 316 (1) (2018) 119–128.
  • [37] Tárkányi F., Takács S., Ditrói F., Szűcs Z., Brezovcsik K., Hermanne A., Ignatyuk A.V., Investigation of Cross Sections of Deuteron Induced Nuclear Reactions on Selenium up to 50 MeV, Eur. Phys. J. A, 57 (4) (2021) 117.
  • [38] Otuka N., Dupont E., Semkova V., Pritychenko B., Blokhin A.I., Aikawa M., Babykina S., Bossant M., Chen G., Dunaeva S., Forrest R.A., Fukahori T., Furutachi N., Ganesan S., Ge Z., Gritzay O.O., Herman M., Hlavač S., Katō K., Lalremruata B., Lee Y.O., Makinaga A., Matsumoto K., Mikhaylyukova M., Pikulina G., Pronyaev V.G., Saxena A., Schwerer O., Simakov S.P., Soppera N., Suzuki R., Takács S., Tao X., Taova S., Tárkányi F., Varlamov V.V., Wang J., Yang S.C., Zerkin V., Zhuang Y., Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC), Nucl. Data Sheets, 120 (2014) 272-276. [39] Zerkin V.V., Pritychenko B., The experimental nuclear reaction data (EXFOR): Extended Computer Database and Web Retrieval System, Nucl. Instrum. Methods. Phys. Res. A, 888 (2018) 31–43.
  • [40] Levkovski V.N., Cross-Section of Medium Mass Nuclide Activation (A=40-100) by Medium Energy Protons and Alpha Particles (E=10-50 MeV), Inter-Vesi, Moscow, USSR (1991).

Effects of Deuteron and Alpha Optical Model Potentials on the Production Cross–Section Calculations of Some Radiobromine Isotopes

Yıl 2022, Cilt: 43 Sayı: 4, 752 - 759, 27.12.2022
https://doi.org/10.17776/csj.1180411

Öz

The extensive use of radioisotopes in diverse fields, particularly in medical studies for diagnosis and treatment, is one of the outcomes of evolving technology and improved scientific research. Among the various radioisotopes used for medical purposes, an example that can be highlighted considering their properties and utilization possibilities is radiobromine isotopes. It is obvious that both experimental and theoretical studies make significant contributions to the literature on medically relevant radioisotopes. The cross–section, which is the data connected with the occurrence of a reaction, is one of the theoretical metrics that may provide information to researchers. The framework of this study was constructed by taking into account the importance of radiobromine isotopes in medical applications as well as the effects of some parameters that might have an impact on their production cross–section calculations. In this context, the impact of five deuteron and eight alpha optical model potentials, which are available in the 1.95 version of the TALYS code, on the production cross–section calculations of 75-77Br radioisotopes through some (d,x) and (α,x) reactions have been studied. The obtained calculation results were compared visually and numerically with the experimental data available in the literature for each reaction, and the outputs were interpreted.

Kaynakça

  • [1] World Nuclear Association. Radioisotopes in Industry. Available at: https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-industry.aspx. Retrieved March 26, 2022.
  • [2] Das T., Pillai M.R.A., Options to Meet the Future Global Demand of Radionuclides for Radionuclide Therapy, Nucl. Med. Biol., 40 (1) (2013) 23-32.
  • [3] Akkoyun S., Kaya H., Estimations of Cross-Sections for Photonuclear Reaction on Calcium Isotopes by Artificial Neural Network, Sakarya University Journal of Science, 24 (5) (2020) 1115-1120.
  • [4] Özdoğan H., Şekerci M., Kaplan A., An Investigation on the Effects of Some Theoretical Models in the Cross-Section Calculations of 50,52,53,54Cr(α,x) Reactions, Phys. At. Nucl., 83 (6) (2020) 820-827.
  • [5] Şekerci M., Özdoğan H., Kaplan A., An Investigation of Effects of Level Density Models and Gamma Ray Strength Functions on Cross-Section Calculations for the Production of 90Y, 153Sm, 169Er, 177Lu and 186Re Therapeutic Radioisotopes via (n,g) Reactions, Radiochim. Acta, 108 (1) (2020) 11-17.
  • [6] Şekerci M., Theoretical Cross-Section Calculations for the (α,n) and (α,2n) Reactions on 46Ti, 50Cr, 54Fe, and 93Nb Isotopes, Mosc. Univ. Phys. Bull., 75 (2) (2020) 123-132.
  • [7] Akkoyun S., Bayram T., Production Cross-Section of 51Cr Radioisotope Using Artificial Neural Networks, Turkish Journal of Science and Health, 2 (1) (2021) 133-138.
  • [8] Özdoğan H., Üncü Y.A., Karaman O., Şekerci M., Kaplan A., Estimations of Giant Dipole Resonance Parameters Using Artificial Neural Network, Appl. Radiat. Isot., 169, (2021) 109581.
  • [9] Yiğit M., Study of Cross Sections for (n,p) Reactions on Hf, Ta and W Isotopes, Appl. Radiat. Isot., 174, (2021) 109779.
  • [10] Stöcklin G., Qaim S.M., Rösch F., The Impact of Radioactivity on Medicine Metallic, Radiochim. Acta, 70/71 (1995) 249-272.
  • [11] Kaplan A, Sarpün İ.H., Aydın A., Tel E., Çapalı V., Özdoğan H., (γ,2n) Reaction Cross-Section Calculations of Several Even-Even Lanthanide Nuclei Using Different Level Density Models, Phys. At. Nucl., 78 (2015) 53-64.
  • [12] Özdoğan H., Şekerci M., Kaplan A., Investigation of Gamma Strength Functions and Level Density Models Effects on Photon Induced Reaction Cross–Section Calculations for the Fusion Structural Materials 46,50Ti, 51V, 58Ni and 63Cu”. Appl. Radiat. Isot., 143 (2019) 6-10.
  • [13] Şekerci M., An Investigation of the Effects of Level Density Models and Alpha Optical Model Potentials on the Cross-Section Calculations for the Production of the Radionuclides 62Cu, 67Ga, 86Y and 89Zr via Some Alpha Induced Reactions, Radiochim. Acta, 108 (6) (2019) 459-467.
  • [14] Şekerci M., Özdoğan H., Kaplan A., Investigation on the Different Production Routes of 67Ga Radioisotope by Using Different Level Density Models, Mosc. Univ. Phys. Bull., 74 (2019) 277-281.
  • [15] Özdoğan H., Üncü Y.A., Şekerci M., Kaplan A., Estimations of Level Density Parameters by Using Artificial Neural Network for Phenomenological Level Density Models, Appl. Radiat. Isot., 169 (2021) 109583.
  • [16] Gülümser T., Kaplan A., A Theoretical Study on the Production Cross–Section Calculations for 24Na Medical Isotope, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14 (2) (2021) 802-813.
  • [17] Sarpün İ.H., Özdoğan H., Taşdöven K., Yalim H.A., Kaplan A., Theoretical Photoneutron Cross-Section Calculations on Osmium Isotopes by Talys And Empire Codes, Mod. Phys. Lett. A., 34 (26) (2019) 1950210.
  • [18] Şekerci M., Özdoğan H., Kaplan A., Level Density Model Effects on the Production Cross-Section Calculations of Some Medical Isotopes via (α,xn) Reactions where x=1–3, Mod. Phys. Lett. A., 35 (24) (2020) 2050202.
  • [19] Özdoğan H., Şekerci̇ M., Kaplan A., Photo-Neutron Cross-Section Calculations of 54,56Fe, 90,91,92,94Zr, 93Nb and 107Ag Isotopes with Newly Obtained Giant Dipole Resonance Parameters, Appl. Radiat. Isot., 165 (2020) 109356.
  • [20] Özdoğan H., Estimation of (n,p) Reaction Cross Sections at 14.5±0.5  MeV Neutron Energy by Using Artificial Neural Network, Appl. Radiat. Isot., 170 (2021) 109584.
  • [21] Weeks M.E., The discovery of the elements. XVII. The halogen family, J. Chem. Educ., 9 (11) (1932) 1915.
  • [22] Greenwood N.N., Earnshaw A., Chemistry of the Elements. 2nd ed. United Kingdom: Oxford, (1997) 1-1364.
  • [23] Lide, D.R. (ed)., CRC Handbook of Chemistry and Physics. 85th ed. Florida, (2004) 1-2712.
  • [24] Rowland D.J., McCarthy T.J., Welch M.J., Radiobromine for Imaging and Therapy. In: Welch M.J., Redvanly C.S., (Eds). Handbook of Radiopharmaceuticals: Radiochemistry and Applications. John Wiley & Sons (2002) 441-465.
  • [25] Wilbur D.S., Adam M.J., Radiobromine and Radioiodine for Medical Applications, Radiochim. Acta, 107 (9-11) (2019) 1033–1063.
  • [26] Koning A., Hilaire S., Goriely S., TALYS–1.95 A Nuclear Reaction Program, User Manual. 1st ed. NRG, The Netherlands (2019).
  • [27] Daehnick W.W., Childs J.D., Vrcelj Z., Global Optical Model Potential for Elastic Deuteron Scattering from 12 to 90 MeV, Phys. Rev. C., 21 (1980) 2253–2274.
  • [28] Bojowald J., Machner H., Nann H., Oelert W., Rogge M., Turek P., Elastic Deuteron Scattering and Optical Model Parameters at Energies up to 100 MeV, Phys. Rev. C., 38 (1988) 1153–1163.
  • [29] Han Y., Shi Y., Shen Q., Deuteron Global Optical Model Potential for Energies up to 200 Mev, Phys. Rev. C., 74 (2006) 044615.
  • [30] An H., Cai C., Global Deuteron Optical Model Potential for the Energy Range up to 183 MeV, Phys. Rev. C., 73 (2006) 054605.
  • [31] McFadden L., Satchler G.R., Optical-Model Analysis of the Scattering of 24.7 MeV Alpha Particles, Nucl. Phys., 84 (1966) 177–200.
  • [32] Demetriou P., Grama C., Goriely S., Improved Global α-optical Model Potentials at Low Energies, Nucl. Phys. A., 707 (2002) 253–276.
  • [33] Avrigeanu V., Avrigeanu M., Mănăilescu C., Further Explorations of the α-particle Optical Model Potential at Low Energies for the Mass Range A≈45–209, Phys. Rev. C., 90 (2014) 044612.
  • [34] Nolte M., Machner H., Bojowald J., Global Optical Potential for α particles with Energies Above 80 MeV, Phys. Rev. C., 36 (1987) 1312.
  • [35] Avrigeanu V., Hodgson P.E., Avrigeanu M., Global Optical Potentials for Emitted Alpha Particles, Phys. Rev. C., 49 (1994) 2136.
  • [36] Alabyad M., Mohamed G.Y., Hassan H.E., Takács S., Ditrói F., Experimental Measurements and Theoretical Calculations for Proton, Deuteron and α-Particle Induced Nuclear Reactions on Calcium: Special Relevance to the Production of 43,44Sc, J. Radioanal. Nucl. Chem., 316 (1) (2018) 119–128.
  • [37] Tárkányi F., Takács S., Ditrói F., Szűcs Z., Brezovcsik K., Hermanne A., Ignatyuk A.V., Investigation of Cross Sections of Deuteron Induced Nuclear Reactions on Selenium up to 50 MeV, Eur. Phys. J. A, 57 (4) (2021) 117.
  • [38] Otuka N., Dupont E., Semkova V., Pritychenko B., Blokhin A.I., Aikawa M., Babykina S., Bossant M., Chen G., Dunaeva S., Forrest R.A., Fukahori T., Furutachi N., Ganesan S., Ge Z., Gritzay O.O., Herman M., Hlavač S., Katō K., Lalremruata B., Lee Y.O., Makinaga A., Matsumoto K., Mikhaylyukova M., Pikulina G., Pronyaev V.G., Saxena A., Schwerer O., Simakov S.P., Soppera N., Suzuki R., Takács S., Tao X., Taova S., Tárkányi F., Varlamov V.V., Wang J., Yang S.C., Zerkin V., Zhuang Y., Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC), Nucl. Data Sheets, 120 (2014) 272-276. [39] Zerkin V.V., Pritychenko B., The experimental nuclear reaction data (EXFOR): Extended Computer Database and Web Retrieval System, Nucl. Instrum. Methods. Phys. Res. A, 888 (2018) 31–43.
  • [40] Levkovski V.N., Cross-Section of Medium Mass Nuclide Activation (A=40-100) by Medium Energy Protons and Alpha Particles (E=10-50 MeV), Inter-Vesi, Moscow, USSR (1991).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer)
Bölüm Natural Sciences
Yazarlar

Mert Şekerci 0000-0003-0870-0506

Abdullah Kaplan 0000-0003-2990-0187

Yayımlanma Tarihi 27 Aralık 2022
Gönderilme Tarihi 26 Eylül 2022
Kabul Tarihi 28 Kasım 2022
Yayımlandığı Sayı Yıl 2022Cilt: 43 Sayı: 4

Kaynak Göster

APA Şekerci, M., & Kaplan, A. (2022). Effects of Deuteron and Alpha Optical Model Potentials on the Production Cross–Section Calculations of Some Radiobromine Isotopes. Cumhuriyet Science Journal, 43(4), 752-759. https://doi.org/10.17776/csj.1180411