Araştırma Makalesi
BibTex RIS Kaynak Göster

Acetylcholinesterase Inhibitor Activity of Some 5-Nitrothiophene-Thiazole Derivatives

Yıl 2022, Cilt: 43 Sayı: 4, 584 - 589, 27.12.2022
https://doi.org/10.17776/csj.1128672

Öz

The potential anticholinesterase characteristics of some thiazole derivatives (2a–2j), including the 5-nitrothiophene moiety, were examined in this work. 1H-NMR, 13C-NMR, and HRMS spectral data were used to determine the structure of the compounds. Using a modified Ellman's spectrophotometric approach, each compound was tested for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. It was determined that the compounds exhibited inhibition of between 33.66–47.96 % against AChE and 13.03–63.29 % against BuChE at 80 µg/mL concentration.

Destekleyen Kurum

Anadolu University Scientific Research Project, Eskisehir, Turkey

Proje Numarası

2005S027

Teşekkür

The authors express their gratitude to the Anadolu University’s DOPNA laboratory, Anadolu University, and Scientific Research Projects.

Kaynakça

  • [1] Vaz M., Silvestre S., Alzheimer's disease: Recent treatment strategies, Eur. J. Pharmacol, 887 (2020) 173554.
  • [2] Bateman R.M., Glacial progress: do we finally understand the narrow-leaved marsh-orchids?, New Journal of Botany, 1(1) (2013) 2-15.
  • [3] Zhou B., Li D., Cui J., Li D., Geng H., Gao J., Zhou B., Simple analogues of natural product chelerythrine: Discovery of a novel anticholinesterase 2-phenylisoquinolin-2-ium scaffold with excellent potency against acetylcholinesterase, European Journal of Medicinal Chemistry, 200 (2020) 1-11.
  • [4] Zhao S., Xu J., Zhang H., Han C.K., Wu J., Li D., Hu C.J. (2021). Multivalent butyrylcholinesterase inhibitor discovered by exploiting dynamic combinatorial chemistry. Bioorganic Chemistry, 108, 104656.
  • [5] Sun J., Wang H., Lei Z., Yue S., Chen J., Sun J., Development of 5-hydroxyl-1-azabenzanthrone derivatives as dual binding site and selective acetylcholinesterase inhibitors, European Journal of Medicinal Chemistry, 234 (2022) 114210.
  • [6] Mao F., Wang H., Ni W., Zheng X., Wang M., Bao K., Ling D., Li X., Xu Y., Zhang H., Design, synthesis, and biological evaluation of orally available first-generation dual-target selective inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5) for the treatment of Alzheimer’s disease, ACS Chemical Neuroscience, 9(2) (2018) 328-345.
  • [7] Kurt B.Z., Gazioglu I., Basile L., Sonmez F., Ginex T., Kucukislamoglu M., Guccione S., Potential of aryl–urea–benzofuranylthiazoles hybrids as multitasking agents in Alzheimer's disease, European Journal of Medicinal Chemistry, 102 (2015) 80-92.
  • [8] Romero A., Cacabelos R., Oset-Gasque M.J., Samadi A., Marco-Contelles J., Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease, Bioorganic & Medicinal Chemistry Letters, 23(7) (2013) 1916-1922.
  • [9] Kandiah N., Pai M.-C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S., Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia, Clinical Interventions in Aging, 12 (2017) 697.
  • [10] Evren A.E., Nuha D., Dawbaa S., Saglik B.N., Yurttas L., Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors, Eur. J. Med. Chem., 229 (2022) 114097.
  • [11] Sabry M.A., Ghaly M.A., Maarouf A.R., El-Subbagh H.I., New thiazole-based derivatives as EGFR/HER2 and DHFR inhibitors: Synthesis, molecular modeling simulations and anticancer activity, Eur. J. Med. Chem., 241 (2022) 114661.
  • [12] Nuha D., Evren A.E., Ciyanci Z.S., Temel H.E., Akalin Ciftci G., Yurttas L., Synthesis, density functional theory calculation, molecular docking studies, and evaluation of novel 5-nitrothiophene derivatives for anticancer activity, Arch Pharm (Weinheim), e2200105 (2022).
  • [13] Fayed E.A., Ragab A., Ezz Eldin R.R., Bayoumi A.H., Ammar Y.A., In vivo screening and toxicity studies of indolinone incorporated thiosemicarbazone, thiazole and piperidinosulfonyl moieties as anticonvulsant agents, Bioorg. Chem., 116 (2021) 105300.
  • [14] Paudel Y.N., Ali M.R., Shah S., Adil M., Akhtar M.S., Wadhwa R., Bawa S., Sharma M., 2-[(4-Chlorobenzyl) amino]-4-methyl-1,3-thiazole-5-carboxylic acid exhibits antidiabetic potential and raises insulin sensitivity via amelioration of oxidative enzymes and inflammatory cytokines in streptozotocin-induced diabetic rats, Biomed. Pharmacother, 89 (2017) 651-659.
  • [15] Nuha D., Evren A.E., Kapusiz Ö., ÜlküyeDudu G., Gundogdu-Karaburun N., Karaburun A.Ç., Berber H., Design, synthesis, and antimicrobial activity of novel coumarin derivatives: An in-silico and in-vitro study, J. Mol. Struct., (2022) 134166.
  • [16] Evren A.E., Dawbaa S., Nuha D., Yavuz Ş.A., Gül Ü.D., Yurttaş L., Design and synthesis of new 4-methylthiazole derivatives: In vitro and in silico studies of antimicrobial activity, J. Mol. Struct., 1241 (2021) 130692.
  • [17] Nuha D., Evren A.E., Yılmaz Cankılıç M., Yurttaş L., Design and synthesis of novel 2,4,5-thiazole derivatives as 6-APA mimics and antimicrobial activity evaluation, Phosphorus Sulfur Silicon Relat Elem., 196(10) (2021) 954-960.
  • [18] Modrić M., Božičević M., Faraho I., Bosnar M., Škorić I., Design, synthesis and biological evaluation of new 1,3-thiazole derivatives as potential anti-inflammatory agents, J. Mol. Struct., 1239 (2021) 130526.
  • [19] Kumar G., Singh N.P., Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives, Bioorg. Chem., 107 (2021) 104608.
  • [20] Ghotbi G., Mahdavi M., Najafi Z., Moghadam F.H., Hamzeh-Mivehroud M., Davaran S., Dastmalchi S., Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease, Bioorganic Chemistry, 103 (2020) 104186.
  • [21] Haroon M., Khalid M., Shahzadi K., Akhtar T., Saba S., Rafique J., Ali S., Irfan M., Alam M.M., Imran M., Alkyl 2-(2-(arylidene) alkylhydrazinyl) thiazole-4-carboxylates: Synthesis, acetyl cholinesterase inhibition and docking studies, Journal of Molecular Structure, 1245 (2021) 131063.
  • [22] Sahin Z., Ertas M., Bender C., Bülbül E.F., Berk B., Biltekin S.N., Yurttaş L., Demirayak Ş., Thiazole‐substituted benzoylpiperazine derivatives as acetylcholinesterase inhibitors, Drug Development Research, 79(8) (2018) 406-425.
  • [23] Yurttaş L., Kaplancıklı Z.A., Özkay Y., Design, synthesis and evaluation of new thiazole-piperazines as acetylcholinesterase inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, 28 (5) (2013) 1040-1047.
  • [24] Karpel R., Aziz-Aloya R.B., Sternfeld M., Ehrlich G., Ginzberg D., Tarroni P., Clementi F., Zakut H., Soreq H., Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins, Experimental cell research, 210(2) (1994). 268-277.
  • [25] Perez-Aguilar B., Vidal C.J., Palomec G., Garcia-Dolores F., Gutierrez-Ruiz M.C., Bucio L., Gomez-Olivares J.L., Gomez-Quiroz L.E., Acetylcholinesterase is associated with a decrease in cell proliferation of hepatocellular carcinoma cells, Biochimica et Biophysica Acta, 1852(7) (2015) 1380-1387.
  • [26] Richbart S.D., Merritt J.C., Nolan N.A., Dasgupta P., Acetylcholinesterase and human cancers, Advances in Cancer Research, 152 (2021) 1-66.
  • [27] Xi H.J., Wu R.P., Liu J.J., Zhang L.J., Li Z.S., Role of acetylcholinesterase in lung cancer, Thoracic Cancer, 6(4) (2015) 390-398.
  • [28] Cheng K., Samimi R., Xie G., Shant J., Drachenberg C., Wade M., Davis R.J., Nomikos G., Raufman J.-P., Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation, American Journal of Physiology-Gastrointestinal and Liver Physiology, 295(3) (2008) G591-G597.
  • [29] Nuha D., Evren A.E., Çiyanci Z.Ş., Temel H.E., Akalin Çiftçi G., Yurttaş L., Synthesis, density functional theory calculation, molecular docking studies, and evaluation of novel 5‐nitrothiophene derivatives for anticancer activity, Archiv der Pharmazie, (2022) e2200105.
  • [30] Arif R., Rana M., Yasmeen S., Amaduddin Khan M.S., Abid M., Khan M.S., Rahisuddin, Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies, Journal of Molecular Structure, (2020) 1208
  • [31] Ellman G.L., Courtney K.D., Andres Jr V., Featherstone R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, 7(2) (1961) 88-95.
  • [32] Chauviere G., Bouteille B., Enanga B., Albuquerque C.D., Croft S.L., Dumas M., Perie J., Synthesis and Biological Activity of Nitro Heterocycles Analogous to Megazol, a Trypanocidal Lead, Journal of Medicinal Chemistry, 46 (2003) 427-440.
Yıl 2022, Cilt: 43 Sayı: 4, 584 - 589, 27.12.2022
https://doi.org/10.17776/csj.1128672

Öz

Proje Numarası

2005S027

Kaynakça

  • [1] Vaz M., Silvestre S., Alzheimer's disease: Recent treatment strategies, Eur. J. Pharmacol, 887 (2020) 173554.
  • [2] Bateman R.M., Glacial progress: do we finally understand the narrow-leaved marsh-orchids?, New Journal of Botany, 1(1) (2013) 2-15.
  • [3] Zhou B., Li D., Cui J., Li D., Geng H., Gao J., Zhou B., Simple analogues of natural product chelerythrine: Discovery of a novel anticholinesterase 2-phenylisoquinolin-2-ium scaffold with excellent potency against acetylcholinesterase, European Journal of Medicinal Chemistry, 200 (2020) 1-11.
  • [4] Zhao S., Xu J., Zhang H., Han C.K., Wu J., Li D., Hu C.J. (2021). Multivalent butyrylcholinesterase inhibitor discovered by exploiting dynamic combinatorial chemistry. Bioorganic Chemistry, 108, 104656.
  • [5] Sun J., Wang H., Lei Z., Yue S., Chen J., Sun J., Development of 5-hydroxyl-1-azabenzanthrone derivatives as dual binding site and selective acetylcholinesterase inhibitors, European Journal of Medicinal Chemistry, 234 (2022) 114210.
  • [6] Mao F., Wang H., Ni W., Zheng X., Wang M., Bao K., Ling D., Li X., Xu Y., Zhang H., Design, synthesis, and biological evaluation of orally available first-generation dual-target selective inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5) for the treatment of Alzheimer’s disease, ACS Chemical Neuroscience, 9(2) (2018) 328-345.
  • [7] Kurt B.Z., Gazioglu I., Basile L., Sonmez F., Ginex T., Kucukislamoglu M., Guccione S., Potential of aryl–urea–benzofuranylthiazoles hybrids as multitasking agents in Alzheimer's disease, European Journal of Medicinal Chemistry, 102 (2015) 80-92.
  • [8] Romero A., Cacabelos R., Oset-Gasque M.J., Samadi A., Marco-Contelles J., Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease, Bioorganic & Medicinal Chemistry Letters, 23(7) (2013) 1916-1922.
  • [9] Kandiah N., Pai M.-C., Senanarong V., Looi I., Ampil E., Park K.W., Karanam A.K., Christopher S., Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia, Clinical Interventions in Aging, 12 (2017) 697.
  • [10] Evren A.E., Nuha D., Dawbaa S., Saglik B.N., Yurttas L., Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors, Eur. J. Med. Chem., 229 (2022) 114097.
  • [11] Sabry M.A., Ghaly M.A., Maarouf A.R., El-Subbagh H.I., New thiazole-based derivatives as EGFR/HER2 and DHFR inhibitors: Synthesis, molecular modeling simulations and anticancer activity, Eur. J. Med. Chem., 241 (2022) 114661.
  • [12] Nuha D., Evren A.E., Ciyanci Z.S., Temel H.E., Akalin Ciftci G., Yurttas L., Synthesis, density functional theory calculation, molecular docking studies, and evaluation of novel 5-nitrothiophene derivatives for anticancer activity, Arch Pharm (Weinheim), e2200105 (2022).
  • [13] Fayed E.A., Ragab A., Ezz Eldin R.R., Bayoumi A.H., Ammar Y.A., In vivo screening and toxicity studies of indolinone incorporated thiosemicarbazone, thiazole and piperidinosulfonyl moieties as anticonvulsant agents, Bioorg. Chem., 116 (2021) 105300.
  • [14] Paudel Y.N., Ali M.R., Shah S., Adil M., Akhtar M.S., Wadhwa R., Bawa S., Sharma M., 2-[(4-Chlorobenzyl) amino]-4-methyl-1,3-thiazole-5-carboxylic acid exhibits antidiabetic potential and raises insulin sensitivity via amelioration of oxidative enzymes and inflammatory cytokines in streptozotocin-induced diabetic rats, Biomed. Pharmacother, 89 (2017) 651-659.
  • [15] Nuha D., Evren A.E., Kapusiz Ö., ÜlküyeDudu G., Gundogdu-Karaburun N., Karaburun A.Ç., Berber H., Design, synthesis, and antimicrobial activity of novel coumarin derivatives: An in-silico and in-vitro study, J. Mol. Struct., (2022) 134166.
  • [16] Evren A.E., Dawbaa S., Nuha D., Yavuz Ş.A., Gül Ü.D., Yurttaş L., Design and synthesis of new 4-methylthiazole derivatives: In vitro and in silico studies of antimicrobial activity, J. Mol. Struct., 1241 (2021) 130692.
  • [17] Nuha D., Evren A.E., Yılmaz Cankılıç M., Yurttaş L., Design and synthesis of novel 2,4,5-thiazole derivatives as 6-APA mimics and antimicrobial activity evaluation, Phosphorus Sulfur Silicon Relat Elem., 196(10) (2021) 954-960.
  • [18] Modrić M., Božičević M., Faraho I., Bosnar M., Škorić I., Design, synthesis and biological evaluation of new 1,3-thiazole derivatives as potential anti-inflammatory agents, J. Mol. Struct., 1239 (2021) 130526.
  • [19] Kumar G., Singh N.P., Synthesis, anti-inflammatory and analgesic evaluation of thiazole/oxazole substituted benzothiazole derivatives, Bioorg. Chem., 107 (2021) 104608.
  • [20] Ghotbi G., Mahdavi M., Najafi Z., Moghadam F.H., Hamzeh-Mivehroud M., Davaran S., Dastmalchi S., Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease, Bioorganic Chemistry, 103 (2020) 104186.
  • [21] Haroon M., Khalid M., Shahzadi K., Akhtar T., Saba S., Rafique J., Ali S., Irfan M., Alam M.M., Imran M., Alkyl 2-(2-(arylidene) alkylhydrazinyl) thiazole-4-carboxylates: Synthesis, acetyl cholinesterase inhibition and docking studies, Journal of Molecular Structure, 1245 (2021) 131063.
  • [22] Sahin Z., Ertas M., Bender C., Bülbül E.F., Berk B., Biltekin S.N., Yurttaş L., Demirayak Ş., Thiazole‐substituted benzoylpiperazine derivatives as acetylcholinesterase inhibitors, Drug Development Research, 79(8) (2018) 406-425.
  • [23] Yurttaş L., Kaplancıklı Z.A., Özkay Y., Design, synthesis and evaluation of new thiazole-piperazines as acetylcholinesterase inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, 28 (5) (2013) 1040-1047.
  • [24] Karpel R., Aziz-Aloya R.B., Sternfeld M., Ehrlich G., Ginzberg D., Tarroni P., Clementi F., Zakut H., Soreq H., Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins, Experimental cell research, 210(2) (1994). 268-277.
  • [25] Perez-Aguilar B., Vidal C.J., Palomec G., Garcia-Dolores F., Gutierrez-Ruiz M.C., Bucio L., Gomez-Olivares J.L., Gomez-Quiroz L.E., Acetylcholinesterase is associated with a decrease in cell proliferation of hepatocellular carcinoma cells, Biochimica et Biophysica Acta, 1852(7) (2015) 1380-1387.
  • [26] Richbart S.D., Merritt J.C., Nolan N.A., Dasgupta P., Acetylcholinesterase and human cancers, Advances in Cancer Research, 152 (2021) 1-66.
  • [27] Xi H.J., Wu R.P., Liu J.J., Zhang L.J., Li Z.S., Role of acetylcholinesterase in lung cancer, Thoracic Cancer, 6(4) (2015) 390-398.
  • [28] Cheng K., Samimi R., Xie G., Shant J., Drachenberg C., Wade M., Davis R.J., Nomikos G., Raufman J.-P., Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation, American Journal of Physiology-Gastrointestinal and Liver Physiology, 295(3) (2008) G591-G597.
  • [29] Nuha D., Evren A.E., Çiyanci Z.Ş., Temel H.E., Akalin Çiftçi G., Yurttaş L., Synthesis, density functional theory calculation, molecular docking studies, and evaluation of novel 5‐nitrothiophene derivatives for anticancer activity, Archiv der Pharmazie, (2022) e2200105.
  • [30] Arif R., Rana M., Yasmeen S., Amaduddin Khan M.S., Abid M., Khan M.S., Rahisuddin, Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies, Journal of Molecular Structure, (2020) 1208
  • [31] Ellman G.L., Courtney K.D., Andres Jr V., Featherstone R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology, 7(2) (1961) 88-95.
  • [32] Chauviere G., Bouteille B., Enanga B., Albuquerque C.D., Croft S.L., Dumas M., Perie J., Synthesis and Biological Activity of Nitro Heterocycles Analogous to Megazol, a Trypanocidal Lead, Journal of Medicinal Chemistry, 46 (2003) 427-440.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri
Bölüm Natural Sciences
Yazarlar

Demokrat Nuha 0000-0002-7271-6791

Asaf Evrim Evren 0000-0002-8651-826X

Zennure Şevval Çiyancı 0000-0002-2511-6689

Halide Edip Temel 0000-0002-5233-1165

Gülşen Akalın Çiftçi 0000-0001-9535-2508

Leyla Yurttaş 0000-0002-0957-6044

Proje Numarası 2005S027
Yayımlanma Tarihi 27 Aralık 2022
Gönderilme Tarihi 10 Haziran 2022
Kabul Tarihi 28 Eylül 2022
Yayımlandığı Sayı Yıl 2022Cilt: 43 Sayı: 4

Kaynak Göster

APA Nuha, D., Evren, A. E., Çiyancı, Z. Ş., Temel, H. E., vd. (2022). Acetylcholinesterase Inhibitor Activity of Some 5-Nitrothiophene-Thiazole Derivatives. Cumhuriyet Science Journal, 43(4), 584-589. https://doi.org/10.17776/csj.1128672