Research Article
BibTex RIS Cite
Year 2022, Volume: 43 Issue: 4, 638 - 644, 27.12.2022
https://doi.org/10.17776/csj.1116265

Abstract

References

  • [1] Pan Y., Wang J., Sun C., Liu X., Zhang H., Fabrication of highly hydrophobic organic-inorganic hybrid magnetic polysulfone microcapsules: A lab-scale feasibility study for removal of oil and organic dyes from environmental aqueous samples, J. Hazard. Mater., 309 (2016) 65–76.
  • [2] Bağda E., Galls As an Effective New Biosorbent for Removal of Methylene Blue and Crystal Violet, Desalin. Water Treat., 43 (2012) 63–75.
  • [3] More T.T.,Yan S., Tyagi R.D., Surampalli R.Y., Potential use of filamentous fungi for wastewater sludge treatment, Bioresour. Technol., 101 (2010) 7691–7700.
  • [4] Deniz F., Karaman S., Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue, Microchem. J., 99 (2011) 296–302.
  • [5] Hsueh C.L., Huang Y.H., Wang C.C., Chen C.Y., Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, 58 (2005) 1409–1414.
  • [6] Asghar A., Raman A.A.A., Daud W.M.A.W. Advanced oxidation processes for in-situ production of hydrogen peroxide / hydroxyl radical for textile wastewater treatment : a review, J. Clean. Prod., 87 (2015) 826–838.
  • [7] Cheng M., Zeng G., Huang D., Lai C., Xu P., Zhang C., Liu Y., Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review, Chem. Eng. J., 284 (2016) 582–598.
  • [8] Antonopoulou M., Evgenidou E., Lambropoulou D., Konstantinou I., A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media, Water Res., 53 (2014) 215–234.
  • [9] Bethi B., Sonawane S.H., Bhanvase B.A., Gumfekar S.P., Chemical Engineering and Processing : Process Intensi fi cation Nanomaterials-based advanced oxidation processes for wastewater treatment : A review, Chem. Eng. Process. Process Intensif., 109 (2016) 178–189.
  • [10] Bokare A.D., Choi W., Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  • [11] Temel N.K., Sökmen M., New catalyst systems for the degradation of chlorophenols, Desalination., 281 (2011) 209–214.
  • [12] Yang X., Cao C., Erickson L., Hohn K., Maghirang R., Klabunde K., Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation, Appl. Catal. B Environ., 91 (2009) 657–662.
  • [13] Saien J., Ardjmand R.R., Iloukhanı H., Photocatalytic decomposition of sodium dodecyl benzene sulfonate under aqueous media in the presence of TiO2, Phys. Chem. Liq., 41 (5) (2003) 519–531.
  • [14] Ollis D.F., Pelizzetti E., Serpone N., Photocatalyzed destruction of water contaminants, Environ. Sci. Technol., 25 (9) (1991) 1522-1529.
  • [15] Wu T., Lin T., Serpone N., TiO2-Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation, Environ. Sci. Technol., 33 (1999) 1379–1387.
  • [16] Temel N.K., Gürkan R., Ayan F., Photocatalytic TiO2-catalyzed degradation of bromophenol blue-mediated Mo(VI)-peroxo complexes in the presence of SDS, Desalin. Water Treat., 3994 (2015) 1–8.
  • [17] Fox M.A., Dulay M.T., Heterogeneous Photocatalysis, Chem. Rev., 93 (1) (1993) 341-357.
  • [18] Kamat P.V., Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev., 93 (1993) 267-300.
  • [19] Sökmen M., Allen D.W., Akkaş F., Kartal N., Acar F., Photo-degradation of some dyes using Ag-loaded titaniumdioxide, Water. Air. Soil Pollut., 132 (2001) 153–163.
  • [20] Kim T., Park C., Yang J., Kim S., Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, J. Hazard. Mater., 112 (2004) 95–103.
  • [21] Dominguez A., Pastrana L., Longo M.A., Rua M.L., Sanroman M.A., Lipolytic enzyme production by Thermus thermophilus HB27 in a stirred tank biorector, Biohem. Eng. J., 26 (2005) 95-99.
  • [22] Hou P., Shi C., Wu L., Hou X., Chitosan/hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: Recyclable metal-promoted Fenton-like degradation, Microchem. J., 128 (2016) 218-225.
  • [23] Kono H., Ogasawara K., Kusumoto R., Oshima K., Hashimoto H., Cationic cellulose hydrogels cross-linked by poly ( ethylene glycol ): Preparation , molecular dynamics , and adsorption of anionic dyes, Carbohyd. Polym., 152 (2016) 170–180.
  • [24] Lin Q., Gao M., Chang J., Ma H., Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes, Carbohyd. Polym., 151 (2016) 283–294.
  • [25] Wang Y., Xie Y., Zhang Y., Tang S., Guo C., Wu J., Lau R., Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer, Chem. Eng. Res. Des., 114 (2016) 258–267.
  • [26] Zhu S., Guo H., Yang F., Wang Z., Synthesis and dye adsorption properties, Chinese Chem. Lett., 26 (2015) 1091–1095.
  • [27] Couto S.R., Dye removal by immobilised fungi, Biotechnol. Adv., 27 (2009) 227–235.
  • [28] Kumar P.S., Ramalingam S., Senthamarai C., Niranjanaa M., Vijayalakshmi P., Sivanesan S., Adsorption of dye from aqueous solution by cashew nut shell : Studies on equilibrium isotherm , kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52–60.
  • [29] Kumar S., Raut S., Bandyopadhyay P., Fungal decolouration and degradation of azo dyes : A review, Fungal Biol. Rev., 30 (2016) 112–133.
  • [30] Do M., Abak H., Alkan M., Adsorption of methylene blue onto hazelnut shell : Kinetics , mechanism and activation parameters, J. Hazard. Mater., 164 (2009) 172–181.
  • [31] Vijayaraghavan K., Yun Y.S., Bacterial biosorbents and biosorption, Biotechnol. Adv., 26 (2008) 266–291.
  • [32] Gupta V.K., Application of low-cost adsorbents for dye removal - A review, J. Environ. Manage., 90 (2009) 2313–2342.
  • [33] Barakat M.A., New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
  • [34] Bagda E., Bagda E., Removal of Basic Blue and Crystal Violet with a Novel Biosorbent : Oak Galls, J. Environ. Prot. Ecol., 531 (2012) 517–531.
  • [35] Bağda E., Erşan M., Bağda E., Investigation of adsorptive removal of tetracycline with sponge like, Rosa canina gall extract modified, polyacrylamide cryogels, J. Environ. Chem. Eng., 1 (2013) 1079–1084.
  • [36] Bubacz K., Choina J., Dolat D., Morawski A.W., Methylene Blue and Phenol Photocatalytic Degradation on Nanoparticles of Anatase TiO2, Pol. J. Environ. Stud., 19 (2010) 685–691.
  • [37] Yahaya Y.A., Mat Don M., Bhatia S., Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies, J. Hazard. Mater., 161 (2009) 189–195.

Decolourization of Methylene Blue in Aqueous Solution by Photocatalytic Oxidation, Fenton Oxidation and Biosorption

Year 2022, Volume: 43 Issue: 4, 638 - 644, 27.12.2022
https://doi.org/10.17776/csj.1116265

Abstract

The aim of the study was to investigate decolourization of Methylene Blue (MB) in aqueous solution using advanced oxidation processes (AOPs) and biosorption comparatively. Photocatalytic decolourization of MB was studied using TiO2 as catalyst. The photocatalytic decolourization of MB by direct UV irradiation alone, only TiO2 and TiO2/UV processes was investigated. It was found that decolourization by photocatalytic process of MB increased with decreasing pH, and decolourization rate also increased in the presence of TiO2/UV when compared to UV irradiation alone. Decolourization of MB was also studied with using the Fenton process (Fe(II)/H2O2). Concentrations of Fe(II) and H2O2 on decolourization ratio were investigated. The optimum catalyst to H2O2 ratio was found 1:3 at pH 4.0. In the second part of the study, the biosorption process was conducted with using plant gall immobilised alumina. The removal percentages were calculated with both plant gall immobilised alumina and alumina alone. The immobilisation of plant gall increased the removal percentages from 60-70% to 90-95%. The proposed methods (AOPs and biosorption) have both advantages and disadvantages compared to each other.

References

  • [1] Pan Y., Wang J., Sun C., Liu X., Zhang H., Fabrication of highly hydrophobic organic-inorganic hybrid magnetic polysulfone microcapsules: A lab-scale feasibility study for removal of oil and organic dyes from environmental aqueous samples, J. Hazard. Mater., 309 (2016) 65–76.
  • [2] Bağda E., Galls As an Effective New Biosorbent for Removal of Methylene Blue and Crystal Violet, Desalin. Water Treat., 43 (2012) 63–75.
  • [3] More T.T.,Yan S., Tyagi R.D., Surampalli R.Y., Potential use of filamentous fungi for wastewater sludge treatment, Bioresour. Technol., 101 (2010) 7691–7700.
  • [4] Deniz F., Karaman S., Removal of an azo-metal complex textile dye from colored aqueous solutions using an agro-residue, Microchem. J., 99 (2011) 296–302.
  • [5] Hsueh C.L., Huang Y.H., Wang C.C., Chen C.Y., Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system, Chemosphere, 58 (2005) 1409–1414.
  • [6] Asghar A., Raman A.A.A., Daud W.M.A.W. Advanced oxidation processes for in-situ production of hydrogen peroxide / hydroxyl radical for textile wastewater treatment : a review, J. Clean. Prod., 87 (2015) 826–838.
  • [7] Cheng M., Zeng G., Huang D., Lai C., Xu P., Zhang C., Liu Y., Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review, Chem. Eng. J., 284 (2016) 582–598.
  • [8] Antonopoulou M., Evgenidou E., Lambropoulou D., Konstantinou I., A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media, Water Res., 53 (2014) 215–234.
  • [9] Bethi B., Sonawane S.H., Bhanvase B.A., Gumfekar S.P., Chemical Engineering and Processing : Process Intensi fi cation Nanomaterials-based advanced oxidation processes for wastewater treatment : A review, Chem. Eng. Process. Process Intensif., 109 (2016) 178–189.
  • [10] Bokare A.D., Choi W., Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  • [11] Temel N.K., Sökmen M., New catalyst systems for the degradation of chlorophenols, Desalination., 281 (2011) 209–214.
  • [12] Yang X., Cao C., Erickson L., Hohn K., Maghirang R., Klabunde K., Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation, Appl. Catal. B Environ., 91 (2009) 657–662.
  • [13] Saien J., Ardjmand R.R., Iloukhanı H., Photocatalytic decomposition of sodium dodecyl benzene sulfonate under aqueous media in the presence of TiO2, Phys. Chem. Liq., 41 (5) (2003) 519–531.
  • [14] Ollis D.F., Pelizzetti E., Serpone N., Photocatalyzed destruction of water contaminants, Environ. Sci. Technol., 25 (9) (1991) 1522-1529.
  • [15] Wu T., Lin T., Serpone N., TiO2-Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation, Environ. Sci. Technol., 33 (1999) 1379–1387.
  • [16] Temel N.K., Gürkan R., Ayan F., Photocatalytic TiO2-catalyzed degradation of bromophenol blue-mediated Mo(VI)-peroxo complexes in the presence of SDS, Desalin. Water Treat., 3994 (2015) 1–8.
  • [17] Fox M.A., Dulay M.T., Heterogeneous Photocatalysis, Chem. Rev., 93 (1) (1993) 341-357.
  • [18] Kamat P.V., Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev., 93 (1993) 267-300.
  • [19] Sökmen M., Allen D.W., Akkaş F., Kartal N., Acar F., Photo-degradation of some dyes using Ag-loaded titaniumdioxide, Water. Air. Soil Pollut., 132 (2001) 153–163.
  • [20] Kim T., Park C., Yang J., Kim S., Comparison of disperse and reactive dye removals by chemical coagulation and Fenton oxidation, J. Hazard. Mater., 112 (2004) 95–103.
  • [21] Dominguez A., Pastrana L., Longo M.A., Rua M.L., Sanroman M.A., Lipolytic enzyme production by Thermus thermophilus HB27 in a stirred tank biorector, Biohem. Eng. J., 26 (2005) 95-99.
  • [22] Hou P., Shi C., Wu L., Hou X., Chitosan/hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: Recyclable metal-promoted Fenton-like degradation, Microchem. J., 128 (2016) 218-225.
  • [23] Kono H., Ogasawara K., Kusumoto R., Oshima K., Hashimoto H., Cationic cellulose hydrogels cross-linked by poly ( ethylene glycol ): Preparation , molecular dynamics , and adsorption of anionic dyes, Carbohyd. Polym., 152 (2016) 170–180.
  • [24] Lin Q., Gao M., Chang J., Ma H., Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes, Carbohyd. Polym., 151 (2016) 283–294.
  • [25] Wang Y., Xie Y., Zhang Y., Tang S., Guo C., Wu J., Lau R., Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer, Chem. Eng. Res. Des., 114 (2016) 258–267.
  • [26] Zhu S., Guo H., Yang F., Wang Z., Synthesis and dye adsorption properties, Chinese Chem. Lett., 26 (2015) 1091–1095.
  • [27] Couto S.R., Dye removal by immobilised fungi, Biotechnol. Adv., 27 (2009) 227–235.
  • [28] Kumar P.S., Ramalingam S., Senthamarai C., Niranjanaa M., Vijayalakshmi P., Sivanesan S., Adsorption of dye from aqueous solution by cashew nut shell : Studies on equilibrium isotherm , kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52–60.
  • [29] Kumar S., Raut S., Bandyopadhyay P., Fungal decolouration and degradation of azo dyes : A review, Fungal Biol. Rev., 30 (2016) 112–133.
  • [30] Do M., Abak H., Alkan M., Adsorption of methylene blue onto hazelnut shell : Kinetics , mechanism and activation parameters, J. Hazard. Mater., 164 (2009) 172–181.
  • [31] Vijayaraghavan K., Yun Y.S., Bacterial biosorbents and biosorption, Biotechnol. Adv., 26 (2008) 266–291.
  • [32] Gupta V.K., Application of low-cost adsorbents for dye removal - A review, J. Environ. Manage., 90 (2009) 2313–2342.
  • [33] Barakat M.A., New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4 (2011) 361–377.
  • [34] Bagda E., Bagda E., Removal of Basic Blue and Crystal Violet with a Novel Biosorbent : Oak Galls, J. Environ. Prot. Ecol., 531 (2012) 517–531.
  • [35] Bağda E., Erşan M., Bağda E., Investigation of adsorptive removal of tetracycline with sponge like, Rosa canina gall extract modified, polyacrylamide cryogels, J. Environ. Chem. Eng., 1 (2013) 1079–1084.
  • [36] Bubacz K., Choina J., Dolat D., Morawski A.W., Methylene Blue and Phenol Photocatalytic Degradation on Nanoparticles of Anatase TiO2, Pol. J. Environ. Stud., 19 (2010) 685–691.
  • [37] Yahaya Y.A., Mat Don M., Bhatia S., Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies, J. Hazard. Mater., 161 (2009) 189–195.
There are 37 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Natural Sciences
Authors

Nuket Kartal Temel 0000-0002-3539-4930

Esra Bağda 0000-0003-1900-4944

Publication Date December 27, 2022
Submission Date May 16, 2022
Acceptance Date December 4, 2022
Published in Issue Year 2022Volume: 43 Issue: 4

Cite

APA Kartal Temel, N., & Bağda, E. (2022). Decolourization of Methylene Blue in Aqueous Solution by Photocatalytic Oxidation, Fenton Oxidation and Biosorption. Cumhuriyet Science Journal, 43(4), 638-644. https://doi.org/10.17776/csj.1116265