Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 43 Sayı: 4, 613 - 620, 27.12.2022
https://doi.org/10.17776/csj.1114040

Öz

Kaynakça

  • [1] Abdel-Mohsen H. T., Sudheendran K., Conrad J., Beifuss U., Synthesis of disulfides by laccase-catalyzed oxidative coupling of heterocyclic thiols, Green Chem., 15 (2013) 1490–1495.
  • [2] Ali A. Q., Teoh S. G., Salhin A., Eltayeb N. E., Khadeer Ahamed, M. B., Majid A. M. S. A., Synthesis of isatin thiosemicarbazones derivatives: In vitro anti-cancer, DNA binding and cleavage activities, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 125 (2014) 440–448.
  • [3] Amirnasr M., Bagheri M., Farrokhpour H., Schenk K. J., Mereiter K., Ford P. C., New Zn(II) complexes with N2S2 Schiff base ligands. Experimental and theoretical studies of the role of Zn(II) in disulfide thiolate-exchange, Polyhedron, 71 (2014) 1–7.
  • [4] Annaraj B., Balakrishnan C., Neelakantan M. A., Synthesis, structure information, DNA/BSA binding affinity and in vitro cytotoxic studies of mixed ligand copper(II) complexes containing a phenylalanine derivative and diimine co-ligands, J. Photochem. Photobiol. B Biol., 160 (2016) 278–291.
  • [5] Annaraj B., Neelakantan M. A., Synthesis, crystal structure, spectral characterization and biological exploration of water soluble Cu(II) complexes of vitamin B6 derivative, Eur. J. Med. Chem., 102 (2015) 1–8.
  • [6] Behpour M., Ghoreishi S. M., Mohammadi N., Soltani N., Salavati-Niasari M., Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel, Corros. Sci., 52 (2010) 4046–4057.
  • [7] Bharti S., Choudhary M., Mohan B., Rawat S. P., Sharma S. R., Ahmad K., Syntheses, spectroscopic characterization, SOD-like properties and antibacterial activities of dimer copper (II) and nickel (II) complexes based on imine ligands containing 2-aminothiophenol moiety: X-ray crystal structure determination of disulfide Schif, J. Mol. Struct., 1164 (2018) 137–154.
  • [8] Bhowon M. G., Jhaumeer Laulloo S., Hosten E. C., Khodabaccus M. M., Rhyman L., Ramasami P., Synthesis, spectroscopic, biological and DFT studies of new t-butyl substituted salicylaldimines having disulfide moiety, J. Mol. Struct., 1175 (2019) 13–23.
  • [9] Chen Y., Ren J. Q., Zhang X. G., Wu D. Y., Shen A. G., Hu J. M., Alkyne-Modulated Surface-Enhanced Raman Scattering-Palette for Optical Interference-Free and Multiplex Cellular Imaging, Anal. Chem., 88 (2016) 6115–6119.
  • [10] Demircioğlu Z., Synthesis, crystal structure, spectroscopic characterization, chemical activity and molecular docking studies of (E) – 2 - ( ( ( 3 - chloro – 4 -methylphenyl ) imino ) methyl ) – 6 - ethoxyphenol , J. Mol. Struct., 1246 (2021) 131114.
  • [11] Gandhimathi S., Theetharappan M., Bhuvanesh N. S. P., Neelakantan M. A., Crystal structure, theoretical and experimental electronic structure and DNA/BSA protein interactions of nickel(II) N2O2 tetradentate Schiff base complexes, Polyhedron, 138 (2017) 88–102.
  • [12] Geethanjali H. S., Nagaraja D., Melavanki R. M., Exploring the mechanism of fluorescence quenching in two biologically active boronic acid derivatives using Stern-Volmer kinetics, J. Mol. Liq., 209 (2015) 669–675.
  • [13] Gu J., Codd R., Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture, J. Inorg. Biochem., 115 (2012) 198–203.
  • [14] Gungor O., Kocer F., Kose M., Cu(II) complexes of biguanidine ligands: Structural characterisation, DNA binding and antimicrobial properties, J. Mol. Struct., 1204 (2020) 127533.
  • [15] Güngör S. A., Tümer M., Köse M., Erkan S., Benzaldehyde derivatives with functional propargyl groups as α-glucosidase inhibitors, J. Mol. Struct., 1206 (2020).
  • [16] Güngör S. A., Tümer M., Köse M., Erkan S., N-substituted benzenesulfonamide compounds: DNA binding properties and molecular docking studies, J. Biomol. Struct. Dyn., (2021) 1–15.
  • [17] Jamshidvand A., Sahihi M., Mirkhani V., Moghadam M., Mohammadpoor-Baltork I., Tangestaninejad S., Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: Influence of substitutions on DNA-binding, J. Mol. Liq., 253 (2018) 61–71.
  • [18] Kumar S., Pandya P., Pandav K., Gupta S. P., Chopra A., Structural studies on ligand–DNA systems: A robust approach in drug design, J. Biosci., 37 (2012) 553–561.
  • [19] Lehrer S., Corrections - Solute Perturbation of Protein Fluorescence. The Quenching of the Tryptophyl Fluorescence of Model Compounds and Lysozyme by Iodide Ion, Biochemistry, 10 (1971) 4995–4995.
  • [20] Liu S., Chen B., Yang Y., Yang Y., Chen Q., Zeng X., Electrochemical oxidations of thioethers: Modulation of oxidation potential using a hydrogen bonding network, Electrochem. Commun., 109 (2019) 106583.
  • [21] Manivel J., Sangeetha S., Murali M., DNA and BSA Interaction, DNA Cleavage and In Vitro Cytotoxicity of Copper(II) Complexes: [Cu(bba)(phen)](ClO4)2 is Promising Chemotherapeutic Scaffold, J. Sci. Res., 12 (2020) 111–133.
  • [22] Moosun S. B., Bhowon M. G., Hosten E. C., Jhaumeer-Laulloo S., Crystal structures, antibacterial, antioxidant and nucleic acid interactions of mononuclear, and tetranuclear palladium(II) complexes containing Schiff base ligands, J. Coord. Chem., 69 (2016) 2736–2753.
  • [23] Moosun S. B., Jhaumeer-Laulloo S., Hosten E. C., Gerber T. I. A., Bhowon M. G., Antioxidant and DNA binding studies of Cu(II) complexes of N,N′-(1,1′-dithio-bis(phenylene))-bis(salicylideneimine): synthesis and characterization, Transit. Met. Chem., 40 (2015) 445–458.
  • [24] Moubeen S. A. M., El-Shahat M. F., Aziz A. A. A., Attia A. S., Synthesis, characterization and biological evaluation of novel octahedral Ru(III) complexes containing pentadentate Schiff base ligands, Curr. Chem. Lett., 10 (2021) 17–32.
  • [25] Neelakantan M. A., Balakrishnan C., Balamurugan K., Mariappan S. S., Zinc(II)-N2O2 ligation complex-based DNA/protein binder and cleaver having enhanced cytotoxic and phosphatase activity, Appl. Organomet. Chem., 32 (2018) 1–18.
  • [26] Neelakantan M. A., Balakrishnan C., Selvarani V., Theetharappan M., DNA/BSA binding interactions and VHPO mimicking potential of vanadium(IV) complexes: Synthesis, structural characterization and DFT studies, Appl. Organomet. Chem., 32 (2018) 1–16.
  • [27] Ramadan R. M., Elantabli F. M., El-Medani S. M., Conversion of thiol to homodisulfide-Schiff base derivative: Synthesis, molecular structure, crystal structure and DFT studies, J. Mol. Struct., 1196 (2019) 547–554.
  • [28] Raman N., Sobha S., Thamaraichelvan A., A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 78 (2011) 888–898.
  • [29] S. Bruker, APEX2 and SAINT Bruker, (1998).
  • [30] Shafaatian B., Mousavi S. S., Afshari S., Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety, J. Mol. Struct., 1123 (2016) 191–198.
  • [31] Shafaatian B., Ozbakzaei Z., Notash B., Rezvani, S. A., Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc., 140 (2015) 248–255.
  • [32] Sharma A. K., Chandra S., Complexation of nitrogen and sulphur donor Schiff’s base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc., 78 (2011) 337–342.
  • [33] Sheldrick G. M., Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. C Struct. Chem. 71 (2015) 3–8.
  • [34] Sheldrick G. M., SHELXT - Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A Found. Crystallogr., 71 (2015) 3–8.
  • [35] Shi J. H., Chen J., Wang J., Zhu Y. Y., Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc., 136 (2015) 443–450.
  • [36] Vardhan H., Yusubov M., Verpoort F., Self-assembled metal-organic polyhedra: An overview of various applications, Coord. Chem. Rev., 306 (2016) 171–194.
  • [37] Wu W. Bin, Wong Y. C., Tan Z. K., Wu J., Photo-induced thiol coupling and C-H activation using nanocrystalline lead-halide perovskite catalysts, Catal. Sci. Technol., 8 (2018) 4257–4263.
  • [38] Zhang Q., Ni Y., Kokot S., Combined voltammetric and spectroscopic analysis of small molecule-biopolymer interactions: The levodopa and serum albumin system, Talanta, 88 (2012) 524–532.

Synthesis, Structural Characterization and Investigation of DNA/BSA Binding Properties of a Homo-disulphide Schiff Base Compound Carrying Oxo Propargyl Group

Yıl 2022, Cilt: 43 Sayı: 4, 613 - 620, 27.12.2022
https://doi.org/10.17776/csj.1114040

Öz

In this work, a new homo-disulphide Schiff base compound (HDSB) was prepared and its structure was characterised by common spectroscopic and analytical methods. The compound was obatined from the condensation reaction of 2-aminothiophenol and 2-hydroxy-4-(prop-2-yn-1-yloxy)benzaldehyde in benzene. In the reaction, both Schiff base condensation and oxidation of thiols into disulphide formed. The isolated compound was structurally characterized by single crystal X-ray diffraction experiment. The homo-disulphide Schiff base compound (HDSB) was screened for its DNA/BSA binding properties using UV-Vis absorption and emission spectral studies. The compound showed considerable binding affinity to double-stranded fish sperm DNA (FSds-DNA) with binding constant of 4.1 × 104 M-1. Spectral measurements suggest that HDSB interacts with DNA in a minor groove binding mode. The compound also showed binding properties towards BSA (bovine serum albumin). The incremental addition of HDSB to the BSA solution resulted in a significant decrease in the characteristic emission band of BSA in the range of 320-500 nm (λexc: 280 nm) showing the binding interactions between HDSB and BSA.

Kaynakça

  • [1] Abdel-Mohsen H. T., Sudheendran K., Conrad J., Beifuss U., Synthesis of disulfides by laccase-catalyzed oxidative coupling of heterocyclic thiols, Green Chem., 15 (2013) 1490–1495.
  • [2] Ali A. Q., Teoh S. G., Salhin A., Eltayeb N. E., Khadeer Ahamed, M. B., Majid A. M. S. A., Synthesis of isatin thiosemicarbazones derivatives: In vitro anti-cancer, DNA binding and cleavage activities, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 125 (2014) 440–448.
  • [3] Amirnasr M., Bagheri M., Farrokhpour H., Schenk K. J., Mereiter K., Ford P. C., New Zn(II) complexes with N2S2 Schiff base ligands. Experimental and theoretical studies of the role of Zn(II) in disulfide thiolate-exchange, Polyhedron, 71 (2014) 1–7.
  • [4] Annaraj B., Balakrishnan C., Neelakantan M. A., Synthesis, structure information, DNA/BSA binding affinity and in vitro cytotoxic studies of mixed ligand copper(II) complexes containing a phenylalanine derivative and diimine co-ligands, J. Photochem. Photobiol. B Biol., 160 (2016) 278–291.
  • [5] Annaraj B., Neelakantan M. A., Synthesis, crystal structure, spectral characterization and biological exploration of water soluble Cu(II) complexes of vitamin B6 derivative, Eur. J. Med. Chem., 102 (2015) 1–8.
  • [6] Behpour M., Ghoreishi S. M., Mohammadi N., Soltani N., Salavati-Niasari M., Investigation of some Schiff base compounds containing disulfide bond as HCl corrosion inhibitors for mild steel, Corros. Sci., 52 (2010) 4046–4057.
  • [7] Bharti S., Choudhary M., Mohan B., Rawat S. P., Sharma S. R., Ahmad K., Syntheses, spectroscopic characterization, SOD-like properties and antibacterial activities of dimer copper (II) and nickel (II) complexes based on imine ligands containing 2-aminothiophenol moiety: X-ray crystal structure determination of disulfide Schif, J. Mol. Struct., 1164 (2018) 137–154.
  • [8] Bhowon M. G., Jhaumeer Laulloo S., Hosten E. C., Khodabaccus M. M., Rhyman L., Ramasami P., Synthesis, spectroscopic, biological and DFT studies of new t-butyl substituted salicylaldimines having disulfide moiety, J. Mol. Struct., 1175 (2019) 13–23.
  • [9] Chen Y., Ren J. Q., Zhang X. G., Wu D. Y., Shen A. G., Hu J. M., Alkyne-Modulated Surface-Enhanced Raman Scattering-Palette for Optical Interference-Free and Multiplex Cellular Imaging, Anal. Chem., 88 (2016) 6115–6119.
  • [10] Demircioğlu Z., Synthesis, crystal structure, spectroscopic characterization, chemical activity and molecular docking studies of (E) – 2 - ( ( ( 3 - chloro – 4 -methylphenyl ) imino ) methyl ) – 6 - ethoxyphenol , J. Mol. Struct., 1246 (2021) 131114.
  • [11] Gandhimathi S., Theetharappan M., Bhuvanesh N. S. P., Neelakantan M. A., Crystal structure, theoretical and experimental electronic structure and DNA/BSA protein interactions of nickel(II) N2O2 tetradentate Schiff base complexes, Polyhedron, 138 (2017) 88–102.
  • [12] Geethanjali H. S., Nagaraja D., Melavanki R. M., Exploring the mechanism of fluorescence quenching in two biologically active boronic acid derivatives using Stern-Volmer kinetics, J. Mol. Liq., 209 (2015) 669–675.
  • [13] Gu J., Codd R., Copper(II)-based metal affinity chromatography for the isolation of the anticancer agent bleomycin from Streptomyces verticillus culture, J. Inorg. Biochem., 115 (2012) 198–203.
  • [14] Gungor O., Kocer F., Kose M., Cu(II) complexes of biguanidine ligands: Structural characterisation, DNA binding and antimicrobial properties, J. Mol. Struct., 1204 (2020) 127533.
  • [15] Güngör S. A., Tümer M., Köse M., Erkan S., Benzaldehyde derivatives with functional propargyl groups as α-glucosidase inhibitors, J. Mol. Struct., 1206 (2020).
  • [16] Güngör S. A., Tümer M., Köse M., Erkan S., N-substituted benzenesulfonamide compounds: DNA binding properties and molecular docking studies, J. Biomol. Struct. Dyn., (2021) 1–15.
  • [17] Jamshidvand A., Sahihi M., Mirkhani V., Moghadam M., Mohammadpoor-Baltork I., Tangestaninejad S., Studies on DNA binding properties of new Schiff base ligands using spectroscopic, electrochemical and computational methods: Influence of substitutions on DNA-binding, J. Mol. Liq., 253 (2018) 61–71.
  • [18] Kumar S., Pandya P., Pandav K., Gupta S. P., Chopra A., Structural studies on ligand–DNA systems: A robust approach in drug design, J. Biosci., 37 (2012) 553–561.
  • [19] Lehrer S., Corrections - Solute Perturbation of Protein Fluorescence. The Quenching of the Tryptophyl Fluorescence of Model Compounds and Lysozyme by Iodide Ion, Biochemistry, 10 (1971) 4995–4995.
  • [20] Liu S., Chen B., Yang Y., Yang Y., Chen Q., Zeng X., Electrochemical oxidations of thioethers: Modulation of oxidation potential using a hydrogen bonding network, Electrochem. Commun., 109 (2019) 106583.
  • [21] Manivel J., Sangeetha S., Murali M., DNA and BSA Interaction, DNA Cleavage and In Vitro Cytotoxicity of Copper(II) Complexes: [Cu(bba)(phen)](ClO4)2 is Promising Chemotherapeutic Scaffold, J. Sci. Res., 12 (2020) 111–133.
  • [22] Moosun S. B., Bhowon M. G., Hosten E. C., Jhaumeer-Laulloo S., Crystal structures, antibacterial, antioxidant and nucleic acid interactions of mononuclear, and tetranuclear palladium(II) complexes containing Schiff base ligands, J. Coord. Chem., 69 (2016) 2736–2753.
  • [23] Moosun S. B., Jhaumeer-Laulloo S., Hosten E. C., Gerber T. I. A., Bhowon M. G., Antioxidant and DNA binding studies of Cu(II) complexes of N,N′-(1,1′-dithio-bis(phenylene))-bis(salicylideneimine): synthesis and characterization, Transit. Met. Chem., 40 (2015) 445–458.
  • [24] Moubeen S. A. M., El-Shahat M. F., Aziz A. A. A., Attia A. S., Synthesis, characterization and biological evaluation of novel octahedral Ru(III) complexes containing pentadentate Schiff base ligands, Curr. Chem. Lett., 10 (2021) 17–32.
  • [25] Neelakantan M. A., Balakrishnan C., Balamurugan K., Mariappan S. S., Zinc(II)-N2O2 ligation complex-based DNA/protein binder and cleaver having enhanced cytotoxic and phosphatase activity, Appl. Organomet. Chem., 32 (2018) 1–18.
  • [26] Neelakantan M. A., Balakrishnan C., Selvarani V., Theetharappan M., DNA/BSA binding interactions and VHPO mimicking potential of vanadium(IV) complexes: Synthesis, structural characterization and DFT studies, Appl. Organomet. Chem., 32 (2018) 1–16.
  • [27] Ramadan R. M., Elantabli F. M., El-Medani S. M., Conversion of thiol to homodisulfide-Schiff base derivative: Synthesis, molecular structure, crystal structure and DFT studies, J. Mol. Struct., 1196 (2019) 547–554.
  • [28] Raman N., Sobha S., Thamaraichelvan A., A novel bioactive tyramine derived Schiff base and its transition metal complexes as selective DNA binding agents, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 78 (2011) 888–898.
  • [29] S. Bruker, APEX2 and SAINT Bruker, (1998).
  • [30] Shafaatian B., Mousavi S. S., Afshari S., Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety, J. Mol. Struct., 1123 (2016) 191–198.
  • [31] Shafaatian B., Ozbakzaei Z., Notash B., Rezvani, S. A., Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc., 140 (2015) 248–255.
  • [32] Sharma A. K., Chandra S., Complexation of nitrogen and sulphur donor Schiff’s base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc., 78 (2011) 337–342.
  • [33] Sheldrick G. M., Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. C Struct. Chem. 71 (2015) 3–8.
  • [34] Sheldrick G. M., SHELXT - Integrated space-group and crystal-structure determination, Acta Crystallogr. Sect. A Found. Crystallogr., 71 (2015) 3–8.
  • [35] Shi J. H., Chen J., Wang J., Zhu Y. Y., Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking, Spectrochim. Acta-Part A Mol. Biomol. Spectrosc., 136 (2015) 443–450.
  • [36] Vardhan H., Yusubov M., Verpoort F., Self-assembled metal-organic polyhedra: An overview of various applications, Coord. Chem. Rev., 306 (2016) 171–194.
  • [37] Wu W. Bin, Wong Y. C., Tan Z. K., Wu J., Photo-induced thiol coupling and C-H activation using nanocrystalline lead-halide perovskite catalysts, Catal. Sci. Technol., 8 (2018) 4257–4263.
  • [38] Zhang Q., Ni Y., Kokot S., Combined voltammetric and spectroscopic analysis of small molecule-biopolymer interactions: The levodopa and serum albumin system, Talanta, 88 (2012) 524–532.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Ayşegül Köse 0000-0003-3323-8149

Yayımlanma Tarihi 27 Aralık 2022
Gönderilme Tarihi 9 Mayıs 2022
Kabul Tarihi 7 Eylül 2022
Yayımlandığı Sayı Yıl 2022Cilt: 43 Sayı: 4

Kaynak Göster

APA Köse, A. (2022). Synthesis, Structural Characterization and Investigation of DNA/BSA Binding Properties of a Homo-disulphide Schiff Base Compound Carrying Oxo Propargyl Group. Cumhuriyet Science Journal, 43(4), 613-620. https://doi.org/10.17776/csj.1114040