Antimicrobial activity screening of a series of taurine derivatives
Year 2021,
Volume: 42 Issue: 4, 781 - 788, 29.12.2021
Özlem Akgül
,
Çağlar Akgünlü
,
Hatice Biler
,
Ayşegül Ateş
,
Şafak Ermertcan
Abstract
In this study, a series of taurinamide derivatives 1–18 were assessed for their in vitro antimicrobial activity. Enterococcus faecalis, which is the third most commonly isolated nosocomial pathogen among hospital infections, was found to be more susceptible to the tested compounds than other pathogens. Two of the tested compounds, 1 and 18, showed promising activity against E. faecalis, with minimal inhibitory concentrations (MICs) of 128 and 64 µg/mL, respectively. On the other hand, compound 3 was distinguished from other compounds by its better activity against G(−) Escherichia coli bacteria, with a MIC of 512 μg/mL. None of the compounds displayed better activity than the standard drugs Ciprofloxacin and Fluconazole.
Supporting Institution
The Scientific and Technological Research Council of Turkey
Project Number
SBAG-118S667
Thanks
The authors gratefully acknowledge The Scientific and Technological Research Council of Turkey [TÜBİTAK; Project number: SBAG-118S667] for financial assistance.
References
- [1] Grygorenko O. O., Biitseva A. V., Zhersh S., Amino Sulfonic Acids, Peptidosulfonamides and Other Related Compounds, Tetrahedron, 74(13) (2018) 1355–1421.
- [2] Chung M., Malatesta P., Bosquesi P., Yamasaki P., Santos J. L. dos, Vizioli E., Advances in Drug Design Based on the Amino Acid Approach: Taurine Analogues for the Treatment of CNS Diseases, Pharmaceuticals, 5(10) (2012) 1128–1146.
- [3] Gupta R. C., Taurine Analogues and Taurine Transport: Therapeutic Advantages, in: Oja, S.S., Saransaari, P., (Eds.), Taurine 6. Springer US, New York, NY (2006) 449–467.
- [4] Ripps H., Shen W., Review: Taurine: A ‘Very Essential’ Amino Acid, Mol. Vis., 18 (November) (2012) 2673–2686.
- [5] Chen K., Zhang Q., Wang J., Liu F., Mi M., Xu H., Chen F., Zeng K., Taurine Protects Transformed Rat Retinal Ganglion Cells from Hypoxia-Induced Apoptosis by Preventing Mitochondrial Dysfunction, Brain Res., 1279 (2009) 131–138.
- [6] Vanitha M. K., Baskaran K., Periyasamy K., Saravanan D., Ilakkia A., Selvaraj S., Venkateswari R., Mani B. R., Anandakumar P., Sakthisekaran D., A Review on the Biomedical Importance of Taurine, Int. J. Pharma Res. Heal. Sci., 3(3) (2015) 680–686.
- [7] Gottardi W., Nagl M., N-Chlorotaurine, a Natural Antiseptic with Outstanding Tolerability, J. Antimicrob. Chemother., 65(3) (2010) 399–409.
- [8] Nagl M., Hess M. W., Pfaller K., Hengster P., Gottardi W., Bactericidal Activity of MicromolarN-Chlorotaurine: Evidence for Its Antimicrobial Function in the Human Defense System, Antimicrob. Agents Chemother., 44(9) (2000) 2507–2513.
- [9] Gottardi W., Debabov D., Nagl M., N-Chloramines, A Promising Class of Well-Tolerated Topical Anti-Infectives, Antimicrob. Agents Chemother., 57(3) (2013) 1107–1114.
- [10] Jekle A., Yoon J., Zuck M., Najafi R., Wang L., Shiau T., Francavilla C., Rani S. A., Eitzinger C., Nagl M., Anderson M., Debabov D., NVC-422 Inactivates Staphylococcus Aureus Toxins, Antimicrob. Agents Chemother., 57(2) (2013) 924–929.
- [11] Winterbottom R., Clapp J. W., Miller W. H., English J. P., Roblin R. O., Studies in Chemotherapy. XV. Amides of Pantoyltaurine 1,. J. Am. Chem. Soc., 69(6) (1947) 1393–1401.
- [12] de Kraker M. E. A., Stewardson A. J., Harbarth S., Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050?, PLOS Med., 13(11) (2016) e1002184.
- [13] Akgül Ö., Öztürk İ., Aygül A., Ermertcan Ş., Synthesis and Antimicrobial Activity of Some Taurinamide Derivatives, Marmara Pharm. J., 21(2) (2017) 361–361.
- [14] Sun H., Tawa G., Wallqvist A., Scaffold-Hopping Provides Both a Conceptual and Practical Route for Generating New Lead Series and Chemistries with Improved Efficacy and Pharmacokinetic Properties Based on Known Drugs and Drug-Target Interactions Classification of Scaffold-Hopping Approaches, Drug Discov. Today, 17(7-8) (2012) 310-324.
- [15] Akgül Ö., Erdoğan M. A., Birim D., Kayabaşı Ç., Gündüz C., Armağan G., Design, Synthesis, Cytotoxic Activity, and Apoptosis Inducing Effects of 4- and N-Substituted Benzoyltaurinamide Derivatives, Turkısh J. Chem., 44(6) (2020) 1674–1693.
- [16] European Committee on Antimicrobial Susceptibility Testing, Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST, Eucast, Version 10 (2020) 1–20.
- [17] Akgül Ö., Kilic F. S., Erol K., Pabuccuoglu V., Synthesis and Anticonvulsant Activity of Some N-Phenyl-2- Phtalimidoethanesulfonamide Derivatives, Arch. Pharm. (Weinheim)., 340 (12) (2007) 656–660.
- [18] Akgül Ö., Angeli A., Vullo D., Carta F., Supuran C. T., Unconventional Amino Acids in Medicinal Chemistry: First Report on Taurine Merged within Carbonic Anhydrase Inhibitors, Bioorg. Chem., 103 (2020) 104236.
- [19] Akgül Ö., Ateş, Ayşegül, Ermertcan Ş., Antimicrobial Activity Evaluation of Newly Synthesized N,N-Disubstituted Taurinamidobenzenesulfonamide Derivatives, J. Turkish Chem. Soc. Sect. A Chem., 8(1) (2021) 323–330.
- [20] López-Rojas P., Janeczko M., Kubiński K., Amesty Á., Masłyk M., Estévez-Braun A., Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives, Molecules, 23(1) (2018) 199.
Year 2021,
Volume: 42 Issue: 4, 781 - 788, 29.12.2021
Özlem Akgül
,
Çağlar Akgünlü
,
Hatice Biler
,
Ayşegül Ateş
,
Şafak Ermertcan
Project Number
SBAG-118S667
References
- [1] Grygorenko O. O., Biitseva A. V., Zhersh S., Amino Sulfonic Acids, Peptidosulfonamides and Other Related Compounds, Tetrahedron, 74(13) (2018) 1355–1421.
- [2] Chung M., Malatesta P., Bosquesi P., Yamasaki P., Santos J. L. dos, Vizioli E., Advances in Drug Design Based on the Amino Acid Approach: Taurine Analogues for the Treatment of CNS Diseases, Pharmaceuticals, 5(10) (2012) 1128–1146.
- [3] Gupta R. C., Taurine Analogues and Taurine Transport: Therapeutic Advantages, in: Oja, S.S., Saransaari, P., (Eds.), Taurine 6. Springer US, New York, NY (2006) 449–467.
- [4] Ripps H., Shen W., Review: Taurine: A ‘Very Essential’ Amino Acid, Mol. Vis., 18 (November) (2012) 2673–2686.
- [5] Chen K., Zhang Q., Wang J., Liu F., Mi M., Xu H., Chen F., Zeng K., Taurine Protects Transformed Rat Retinal Ganglion Cells from Hypoxia-Induced Apoptosis by Preventing Mitochondrial Dysfunction, Brain Res., 1279 (2009) 131–138.
- [6] Vanitha M. K., Baskaran K., Periyasamy K., Saravanan D., Ilakkia A., Selvaraj S., Venkateswari R., Mani B. R., Anandakumar P., Sakthisekaran D., A Review on the Biomedical Importance of Taurine, Int. J. Pharma Res. Heal. Sci., 3(3) (2015) 680–686.
- [7] Gottardi W., Nagl M., N-Chlorotaurine, a Natural Antiseptic with Outstanding Tolerability, J. Antimicrob. Chemother., 65(3) (2010) 399–409.
- [8] Nagl M., Hess M. W., Pfaller K., Hengster P., Gottardi W., Bactericidal Activity of MicromolarN-Chlorotaurine: Evidence for Its Antimicrobial Function in the Human Defense System, Antimicrob. Agents Chemother., 44(9) (2000) 2507–2513.
- [9] Gottardi W., Debabov D., Nagl M., N-Chloramines, A Promising Class of Well-Tolerated Topical Anti-Infectives, Antimicrob. Agents Chemother., 57(3) (2013) 1107–1114.
- [10] Jekle A., Yoon J., Zuck M., Najafi R., Wang L., Shiau T., Francavilla C., Rani S. A., Eitzinger C., Nagl M., Anderson M., Debabov D., NVC-422 Inactivates Staphylococcus Aureus Toxins, Antimicrob. Agents Chemother., 57(2) (2013) 924–929.
- [11] Winterbottom R., Clapp J. W., Miller W. H., English J. P., Roblin R. O., Studies in Chemotherapy. XV. Amides of Pantoyltaurine 1,. J. Am. Chem. Soc., 69(6) (1947) 1393–1401.
- [12] de Kraker M. E. A., Stewardson A. J., Harbarth S., Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050?, PLOS Med., 13(11) (2016) e1002184.
- [13] Akgül Ö., Öztürk İ., Aygül A., Ermertcan Ş., Synthesis and Antimicrobial Activity of Some Taurinamide Derivatives, Marmara Pharm. J., 21(2) (2017) 361–361.
- [14] Sun H., Tawa G., Wallqvist A., Scaffold-Hopping Provides Both a Conceptual and Practical Route for Generating New Lead Series and Chemistries with Improved Efficacy and Pharmacokinetic Properties Based on Known Drugs and Drug-Target Interactions Classification of Scaffold-Hopping Approaches, Drug Discov. Today, 17(7-8) (2012) 310-324.
- [15] Akgül Ö., Erdoğan M. A., Birim D., Kayabaşı Ç., Gündüz C., Armağan G., Design, Synthesis, Cytotoxic Activity, and Apoptosis Inducing Effects of 4- and N-Substituted Benzoyltaurinamide Derivatives, Turkısh J. Chem., 44(6) (2020) 1674–1693.
- [16] European Committee on Antimicrobial Susceptibility Testing, Routine and Extended Internal Quality Control for MIC Determination and Disk Diffusion as Recommended by EUCAST, Eucast, Version 10 (2020) 1–20.
- [17] Akgül Ö., Kilic F. S., Erol K., Pabuccuoglu V., Synthesis and Anticonvulsant Activity of Some N-Phenyl-2- Phtalimidoethanesulfonamide Derivatives, Arch. Pharm. (Weinheim)., 340 (12) (2007) 656–660.
- [18] Akgül Ö., Angeli A., Vullo D., Carta F., Supuran C. T., Unconventional Amino Acids in Medicinal Chemistry: First Report on Taurine Merged within Carbonic Anhydrase Inhibitors, Bioorg. Chem., 103 (2020) 104236.
- [19] Akgül Ö., Ateş, Ayşegül, Ermertcan Ş., Antimicrobial Activity Evaluation of Newly Synthesized N,N-Disubstituted Taurinamidobenzenesulfonamide Derivatives, J. Turkish Chem. Soc. Sect. A Chem., 8(1) (2021) 323–330.
- [20] López-Rojas P., Janeczko M., Kubiński K., Amesty Á., Masłyk M., Estévez-Braun A., Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives, Molecules, 23(1) (2018) 199.