Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 42 Sayı: 4, 951 - 964, 29.12.2021

Öz

Kaynakça

  • [1] Mercan E., Ayan Y., Kahraman N., Investigation on joint properties of AA5754 and AA6013 dissimilar aluminum alloys welded using automatic GMAW, Engineering Science and Technology, an International Journal, 23 (2020) 723-731.
  • [2] Franz D., Szilvasi T., Irran E., Inoue S., A monotopic aluminum telluride with an Al= Te double bond stabilized by N-heterocyclic carbenes, Nature Communication, 6 (2015) 1-6.
  • [3] Zamzami I.A., Susmel L., Nominal and local stress quantities to design aluminium-to-steel thin welded joints against fatigue, International Journal of Fatigue, 101 (2) (2017) 137–158.
  • [4] Heinen P., Wu H., Olowinsky A., GillnerA., Helium-tight laser beam welding of aluminum with brillant laser beam radiation, Physics Procedia, 56 (2014) 554–565.
  • [5] Li J., Xue J., Zhang Z., Hu Y., Effects of thermal frequency on microstructures, Applied Science, 8 (4) (2018) 540.
  • [6] Borrego L.P., J.D. Costa, J.S., Jesus, A.R. Loureiro, J.M. Ferreira., Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds, Theoretical and Applied Fracture Mechanics,70 (2014)68-74.
  • [7] Ilman M.N., Triwibowo N.A., Wahyudianto A., Muslih M.R., Environmentally assisted fatigue behaviour of stress relieved metal inert gas (MIG) AA5083 welds in 3.5% NaCl solution, International Journal of Fatigue, 100 (2017) 285–295.
  • [8] Perel V.Y., Misak H.E, Mall S., Jain V.K, Biaxial fatigue crack growth behavior in aluminium alloy 5083-H116 under ambient laboratory and saltwater environments, Journal of Material Engineering Performance, 24(4) (2015) 1565–72.
  • [9] Abkenar M.R., Kihl D.P., Manzari M.T., Fatigue tests on aluminium specimens subjected to constant and random amplitude loadings, ASME Journal of Materials Technology, 138(2016) 1–7.
  • [10] Holtz R.L., Pao P.S., Bayles R.A., Longazel T.M., Goswami R., Corrosion fatigue of aluminium alloy 5083-H131 sensitizes at 448 K (175°C), Metal Materials Transaction A, 43 A (2012) 2839–2849.
  • [11] Miller K.W., Chao Y.J., Wang P.C., Performance Comparison of Spot-Welded, Adhesive Bonded, and Self-Piercing Riveted Aluminium Joints, ASM proceedings of the international conference: trends in welding research, (1998) 910–915.
  • [12] Costa J.D.M, Jesus J.S., Loureiro A., Ferreira J.A.M., Borrego L.P., Fatigue life improvement of mig welded aluminum T-joints by friction stir processing, Internatinal Journal of Fatigue, 61 (2014) 244–54.
  • [13] Messler Jr R.W., Principles of welding: processes, physics, chemistry and metallurgy, 1st ed. New York: John Wiley & Sons, (1999).
  • [14] Ilman M.N., Kusmono, Muslih M.R., Subeki N., Wibowo H., Mitigating distortion and residual stress by static thermal tensioning to improve fatigue crack growth performance of MIG AA5083 welds, Materials Design, 99 (2016) 273– 283
  • [15] Mochizuki M., Toyoda M., Weld distortion control during welding process with reverse-side heating, ASME Journal of Pressure Vessel Technology, 129 (2007) 619–29.
  • [16] Han W.T., Wan F.R., Li G., Dong C.L., Tong J.H., Effect of trailing heat sink on residual stresses and welding distortion in friction stir welding Al sheets, Science Technology Welding Joint, 16 (5) (2011) 453–8.
  • [17] Cheng X., Fisher J.W., Prask H.J., Gnaupel-Herold T., Yen B.T., Roy S., Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures, Internatinal Journal of Fatigue, 25 (2003) 1259–69.
  • [18] Ipekoglu G., Cam G., Effects of initial temper condition and post weld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminium alloys, Metal Materials Transactions A, 45 (2014) 3074–87.
  • [19] Vijay S., Rajanarayanan S., Ganeshan G.N., Analysis on mechanical properties of gas tungsten arc welded dissimilar aluminium alloy (Al2024 & Al6063), Materials Today: Proceedings, 21 (2020) 384–391.
  • [20] Miller, Equipments.Welders. Available at: https://www.millerwelds.com/equipment/welders/mig-gmaw. Retrieved March 2, 2021.
  • [21] Bunaziv I., Akselsen O.M., Salminen A., Unt A., Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy, Journal of Materials Processing Technology ,233 (2016) 107–114.
  • [22] Yong P., Changbin S., Yadong Z., Ying C., Comparison of Electrochemical Behaviors between FSW and MIG Joints for 6082 Aluminum Alloy, Rare Metal Materials and Engineering, 46(2) (2017) 0344-0348.
  • [23] Schneider C.F., Lisboa C.P., Silva R.A and Lermen R.T., Optimizing the Parameters of TIG-MIG/MAG Hybrid Welding on the Geometry of Bead Welding Using the Taguchi Method, Journal of Manufacturing and Materials Processing, (2017) 1- 14.
  • [24] Subbaiah K., Microstructure and Mechanical properties of Tungsten Inert Gas Welded Joints of Cast Al-Mg-Sc alloy, Materials Today: Proceedings, 16 (2019) 248–25.
  • [25] Zhang C., Baob Y., Zhua H., Niea X., Zhanga W., Zhanga S., Zeng A. A, comparison between laser and TIG welding of selective laser melted AlSi10Mg, Optics and Laser Technology, 120 (2019) 105696.
  • [26] Singh L., Singh R., Singh N. K., Singh D., Singh P,. An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 aluminium Alloy, International Journal of Mechanical, Industrial Science and Engineering (2013) 795-798.
  • [27] Kumar S., Shahi A. S., Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints, Materials and Design, (2011) 3617–3623.
  • [28] Jahanzaib M., Hussain S., Wasim A., Aziz H., Mirza A., Ullah S., Modeling of weld bead geometry on HSLA steel using response surface methodology, The İnternational Journal of Advance Manufacturing Technology, (2017) 2087 – 2098.
  • [29] Raveendra A., Kumar B.V.R.R, Sivakumar A., Reddy V.P K., Influence of Welding Parameters on Weld Characteristics of 5052 Aluminium Alloy sheet Using TIG Welding, International Journal of Application or Innovation in Engineering & Management (IJAIEM), (2014) 186-190.
  • [30] Gharibshahiyan E., Raouf A.H., Parvin N., Rahimian M., The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding, Materials & Design, (2011) 2042–2048.
  • [31] Liu Y., Wang W., Xiea J., Sunb S., Wang L., Qiana Y., Menga Y., Wei Y., Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding, Materials Science and Engineering A, 549 (2012) 7-13.
  • [32] Hirata T., Oguri T., Hagino H., Tanaka T., Chung S.W., Takigawa Y., Higashi K., Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy, Material Science and Engineering A, 456 (2007) 344–349.
  • [33] Peel M., Steuwer A, Preuss M., Withers P.J., Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Materilia, 51 (2003) 4791–4801.
  • [34] Haboudou A., Peyre P., Vannes A.B., Peix G., Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminium alloys, Materials Science and Engineering A, 363 (2003) 40–52.
  • [35] James M.N., Hughes D.J., Hattingh D.G., Mills G., Webster P.J., Residual stress and strain in MIG butt welds in 5083-H321 aluminium: As-welded and fatigue cycled, International Journal of Fatigue, 31 (2009) 28–40.
  • [36] Spinelli J.E., Ferreira I.L., Garcia A., Influence of melt convection on the columnar to equiaxed transition and microstructure of downward unsteady-state directionally solidified Sn–Pb alloys, Journal of Alloys and Compounds, 384 (2004) 217–226.
  • [37] Wu C.S., Computer Sımulatıon Of Three‐Dımensıonal Convectıon In Travellıng Mıg Weld Pools, Engineering Computations, 9 (1992) 529–537.
  • [38] Mutombo K., Toit M.D., Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding, Materials Science Forum, 654–656 (2010) 2560–2563.
  • [39] Moreira P.M.G.P., Figueiredo M.A.V., Castro P.M.S.T., Fatigue behaviour of FSW and MIG weldments for two aluminium alloys., Theory Application Fracture Mechanics, 48 (2007) 169–177.
  • [40] Kumar K., Mohan P., Masanta M., Influence of welding current on the mechanical property of 3 mm thick commercial 1050 aluminium butt joint weld by AC-TIG welding method, Materials Today: Proceedings, 5 (2018) 24141–24146.
  • [41] Ahmad Ibrahim M. F., Bakar S.R.S., Jalar A., Othman N. K., Sharif J., Daud A. R., Rashdi N. M., Effect of porosity on tensile behavior of welded AA6061-T6 aluminium alloy, Applied Mechanics and Materials, (2011) 534-53.
  • [42] Pessoa E. C. P., Bracarense A. Q., Zica E. M., Liu S., Guerrero F. P., Porosity variation along multipass underwater wet welds and its influence on mechanical properties, Journal of Materials Processing Technology, (2006) 239-24.
  • [43] Borrego L.P., Costa, J.D., Jesus, J.S., Loureiro A.R., Ferreira J.M., Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds, Theoretical and Applied Fracture Mechanics, 70 (2014) 68-74.
  • [44] Yürük A., Kaya Y., Kahraman N., Alüminyum Alaşımlarının MIG Kaynak Yöntemi ile Kaynak Edilebilirliğinin İncelenmesi, Bayburt Üniversitesi Fen Bilimleri Dergisi, 4(1) (2021).

Investigation of joining properties of AA 5083 material in MIG and TIG weldings

Yıl 2021, Cilt: 42 Sayı: 4, 951 - 964, 29.12.2021

Öz

AA 5083 Aluminum alloys begin to be replaced steels in automobiles, ships, and high-speed-trains by providing reduced energy consumption and low carbon emissions thanks to their low densities, good weldabilities, and high corrosion resistance. During the production of high-speed trains, which are of special importance for our country, the proper selection of joining method for AA5083 increases the production speed. In this study, AA5083 alloys with 8 mm thickness were butt-welded under different parameters by using MIG and TIG weldings. It was aimed to determine the changes in microstructure and mechanical properties of welded samples, and also to specify the proper welding method. As a result, it was found that samples joined by MIG welding have higher strength and ductility, along with a lower amount of microstructural defects compared to their counterparts joined by TIG welding.

Teşekkür

We would like to thank GÖK YAPI AŞ and TÜDEMSAŞ Welding School.

Kaynakça

  • [1] Mercan E., Ayan Y., Kahraman N., Investigation on joint properties of AA5754 and AA6013 dissimilar aluminum alloys welded using automatic GMAW, Engineering Science and Technology, an International Journal, 23 (2020) 723-731.
  • [2] Franz D., Szilvasi T., Irran E., Inoue S., A monotopic aluminum telluride with an Al= Te double bond stabilized by N-heterocyclic carbenes, Nature Communication, 6 (2015) 1-6.
  • [3] Zamzami I.A., Susmel L., Nominal and local stress quantities to design aluminium-to-steel thin welded joints against fatigue, International Journal of Fatigue, 101 (2) (2017) 137–158.
  • [4] Heinen P., Wu H., Olowinsky A., GillnerA., Helium-tight laser beam welding of aluminum with brillant laser beam radiation, Physics Procedia, 56 (2014) 554–565.
  • [5] Li J., Xue J., Zhang Z., Hu Y., Effects of thermal frequency on microstructures, Applied Science, 8 (4) (2018) 540.
  • [6] Borrego L.P., J.D. Costa, J.S., Jesus, A.R. Loureiro, J.M. Ferreira., Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds, Theoretical and Applied Fracture Mechanics,70 (2014)68-74.
  • [7] Ilman M.N., Triwibowo N.A., Wahyudianto A., Muslih M.R., Environmentally assisted fatigue behaviour of stress relieved metal inert gas (MIG) AA5083 welds in 3.5% NaCl solution, International Journal of Fatigue, 100 (2017) 285–295.
  • [8] Perel V.Y., Misak H.E, Mall S., Jain V.K, Biaxial fatigue crack growth behavior in aluminium alloy 5083-H116 under ambient laboratory and saltwater environments, Journal of Material Engineering Performance, 24(4) (2015) 1565–72.
  • [9] Abkenar M.R., Kihl D.P., Manzari M.T., Fatigue tests on aluminium specimens subjected to constant and random amplitude loadings, ASME Journal of Materials Technology, 138(2016) 1–7.
  • [10] Holtz R.L., Pao P.S., Bayles R.A., Longazel T.M., Goswami R., Corrosion fatigue of aluminium alloy 5083-H131 sensitizes at 448 K (175°C), Metal Materials Transaction A, 43 A (2012) 2839–2849.
  • [11] Miller K.W., Chao Y.J., Wang P.C., Performance Comparison of Spot-Welded, Adhesive Bonded, and Self-Piercing Riveted Aluminium Joints, ASM proceedings of the international conference: trends in welding research, (1998) 910–915.
  • [12] Costa J.D.M, Jesus J.S., Loureiro A., Ferreira J.A.M., Borrego L.P., Fatigue life improvement of mig welded aluminum T-joints by friction stir processing, Internatinal Journal of Fatigue, 61 (2014) 244–54.
  • [13] Messler Jr R.W., Principles of welding: processes, physics, chemistry and metallurgy, 1st ed. New York: John Wiley & Sons, (1999).
  • [14] Ilman M.N., Kusmono, Muslih M.R., Subeki N., Wibowo H., Mitigating distortion and residual stress by static thermal tensioning to improve fatigue crack growth performance of MIG AA5083 welds, Materials Design, 99 (2016) 273– 283
  • [15] Mochizuki M., Toyoda M., Weld distortion control during welding process with reverse-side heating, ASME Journal of Pressure Vessel Technology, 129 (2007) 619–29.
  • [16] Han W.T., Wan F.R., Li G., Dong C.L., Tong J.H., Effect of trailing heat sink on residual stresses and welding distortion in friction stir welding Al sheets, Science Technology Welding Joint, 16 (5) (2011) 453–8.
  • [17] Cheng X., Fisher J.W., Prask H.J., Gnaupel-Herold T., Yen B.T., Roy S., Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures, Internatinal Journal of Fatigue, 25 (2003) 1259–69.
  • [18] Ipekoglu G., Cam G., Effects of initial temper condition and post weld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminium alloys, Metal Materials Transactions A, 45 (2014) 3074–87.
  • [19] Vijay S., Rajanarayanan S., Ganeshan G.N., Analysis on mechanical properties of gas tungsten arc welded dissimilar aluminium alloy (Al2024 & Al6063), Materials Today: Proceedings, 21 (2020) 384–391.
  • [20] Miller, Equipments.Welders. Available at: https://www.millerwelds.com/equipment/welders/mig-gmaw. Retrieved March 2, 2021.
  • [21] Bunaziv I., Akselsen O.M., Salminen A., Unt A., Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy, Journal of Materials Processing Technology ,233 (2016) 107–114.
  • [22] Yong P., Changbin S., Yadong Z., Ying C., Comparison of Electrochemical Behaviors between FSW and MIG Joints for 6082 Aluminum Alloy, Rare Metal Materials and Engineering, 46(2) (2017) 0344-0348.
  • [23] Schneider C.F., Lisboa C.P., Silva R.A and Lermen R.T., Optimizing the Parameters of TIG-MIG/MAG Hybrid Welding on the Geometry of Bead Welding Using the Taguchi Method, Journal of Manufacturing and Materials Processing, (2017) 1- 14.
  • [24] Subbaiah K., Microstructure and Mechanical properties of Tungsten Inert Gas Welded Joints of Cast Al-Mg-Sc alloy, Materials Today: Proceedings, 16 (2019) 248–25.
  • [25] Zhang C., Baob Y., Zhua H., Niea X., Zhanga W., Zhanga S., Zeng A. A, comparison between laser and TIG welding of selective laser melted AlSi10Mg, Optics and Laser Technology, 120 (2019) 105696.
  • [26] Singh L., Singh R., Singh N. K., Singh D., Singh P,. An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 aluminium Alloy, International Journal of Mechanical, Industrial Science and Engineering (2013) 795-798.
  • [27] Kumar S., Shahi A. S., Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints, Materials and Design, (2011) 3617–3623.
  • [28] Jahanzaib M., Hussain S., Wasim A., Aziz H., Mirza A., Ullah S., Modeling of weld bead geometry on HSLA steel using response surface methodology, The İnternational Journal of Advance Manufacturing Technology, (2017) 2087 – 2098.
  • [29] Raveendra A., Kumar B.V.R.R, Sivakumar A., Reddy V.P K., Influence of Welding Parameters on Weld Characteristics of 5052 Aluminium Alloy sheet Using TIG Welding, International Journal of Application or Innovation in Engineering & Management (IJAIEM), (2014) 186-190.
  • [30] Gharibshahiyan E., Raouf A.H., Parvin N., Rahimian M., The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding, Materials & Design, (2011) 2042–2048.
  • [31] Liu Y., Wang W., Xiea J., Sunb S., Wang L., Qiana Y., Menga Y., Wei Y., Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding, Materials Science and Engineering A, 549 (2012) 7-13.
  • [32] Hirata T., Oguri T., Hagino H., Tanaka T., Chung S.W., Takigawa Y., Higashi K., Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy, Material Science and Engineering A, 456 (2007) 344–349.
  • [33] Peel M., Steuwer A, Preuss M., Withers P.J., Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Materilia, 51 (2003) 4791–4801.
  • [34] Haboudou A., Peyre P., Vannes A.B., Peix G., Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminium alloys, Materials Science and Engineering A, 363 (2003) 40–52.
  • [35] James M.N., Hughes D.J., Hattingh D.G., Mills G., Webster P.J., Residual stress and strain in MIG butt welds in 5083-H321 aluminium: As-welded and fatigue cycled, International Journal of Fatigue, 31 (2009) 28–40.
  • [36] Spinelli J.E., Ferreira I.L., Garcia A., Influence of melt convection on the columnar to equiaxed transition and microstructure of downward unsteady-state directionally solidified Sn–Pb alloys, Journal of Alloys and Compounds, 384 (2004) 217–226.
  • [37] Wu C.S., Computer Sımulatıon Of Three‐Dımensıonal Convectıon In Travellıng Mıg Weld Pools, Engineering Computations, 9 (1992) 529–537.
  • [38] Mutombo K., Toit M.D., Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding, Materials Science Forum, 654–656 (2010) 2560–2563.
  • [39] Moreira P.M.G.P., Figueiredo M.A.V., Castro P.M.S.T., Fatigue behaviour of FSW and MIG weldments for two aluminium alloys., Theory Application Fracture Mechanics, 48 (2007) 169–177.
  • [40] Kumar K., Mohan P., Masanta M., Influence of welding current on the mechanical property of 3 mm thick commercial 1050 aluminium butt joint weld by AC-TIG welding method, Materials Today: Proceedings, 5 (2018) 24141–24146.
  • [41] Ahmad Ibrahim M. F., Bakar S.R.S., Jalar A., Othman N. K., Sharif J., Daud A. R., Rashdi N. M., Effect of porosity on tensile behavior of welded AA6061-T6 aluminium alloy, Applied Mechanics and Materials, (2011) 534-53.
  • [42] Pessoa E. C. P., Bracarense A. Q., Zica E. M., Liu S., Guerrero F. P., Porosity variation along multipass underwater wet welds and its influence on mechanical properties, Journal of Materials Processing Technology, (2006) 239-24.
  • [43] Borrego L.P., Costa, J.D., Jesus, J.S., Loureiro A.R., Ferreira J.M., Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds, Theoretical and Applied Fracture Mechanics, 70 (2014) 68-74.
  • [44] Yürük A., Kaya Y., Kahraman N., Alüminyum Alaşımlarının MIG Kaynak Yöntemi ile Kaynak Edilebilirliğinin İncelenmesi, Bayburt Üniversitesi Fen Bilimleri Dergisi, 4(1) (2021).
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Natural Sciences
Yazarlar

Hatice Varol Özkavak 0000-0002-0314-0119

Serdar Mercan 0000-0002-1225-8290

Yayımlanma Tarihi 29 Aralık 2021
Gönderilme Tarihi 26 Mart 2021
Kabul Tarihi 5 Kasım 2021
Yayımlandığı Sayı Yıl 2021Cilt: 42 Sayı: 4

Kaynak Göster

APA Varol Özkavak, H., & Mercan, S. (2021). Investigation of joining properties of AA 5083 material in MIG and TIG weldings. Cumhuriyet Science Journal, 42(4), 951-964.