Research Article
BibTex RIS Cite

Palladium (II) Kompleks İyondaki Primer, Sekonder ve Tersiyer Amin Ligandlarının Termo-Fiziksel, Kimyasal Reaktivite ve Biyolojik Özelliklerle Karşılaştırılması: DFT Çalışması

Year 2019, Volume: 40 Issue: 3, 679 - 694, 30.09.2019
https://doi.org/10.17776/csj.549426

Abstract

Palladyum
kenetlenme reaksiyonları için katalizör olarak dikkate alınır ve sanayide
kullanışlı bir metaldir. Termo-fiziksel, kimyasal reaktivite ve biyolojik
etkileşim, kimya endüstrisi, ilaç endüstrisi ve akademi de en çok dikkate
alınan parametrelerdir. Farklı amin ligandları içeren Pd (II) kompleks iyonu,
çalışmanın teorik kısmında DFT yöntemi kullanılarak incelenmiştir. Serbest
enerji, entropi, dipol moment, bağlanma enerjisi, nükleer enerji, elektronik
enerji, oluşum ısısı gibi termo-fiziksel parametreler, HOMO enerjisi, LUMO
enerjisi, HOMO-LUMO enerji aralığı, iyonlaşma enerjisi, elektronegatiflik,
sertlik, yumuşaklık ve elektron ilgisi gibi reaktivite özellikleri, yük
yoğunluğu, yüzey alanı, hacim logP, Polarlanabilirlik, refraktivite, moleküler
kütle, PIC50 gibi biyolojik özellikleri DFT methodu yardımıyla hesaplanmıştır.
L01, L02, L03 ve L04 için HOMO-LUMO enerji aralığı değerleri 10.78, 0.59, 0.50
ve 10.73; PIC50 değerleri sırasıyla -20.41, -8.46, -1.69 ve 1.83 tür. L02 ile
L03 ün, L02 ile L04 ün kimyasal kararlılıkları hemen hemen aynıdır. QSAR
çalışması moleküllerin biyolojik aktiflikleri hakkında bilgi sağlar. Amin
ligandlarını içeren dört Pd(II) kompleks iyonu L03 ve L04 için güçlü biyolojik
aktiviteye sahiptir.

References

  • [1] Valderrama S., Van Roekel N., Andersson M., Goodacre C. J., Munoz C. A., A comparison of the marginal and internal adaptation of titanium and gold-platinum-palladium metal ceramic crowns, International Journal of Prosthodontics, 1995. 8(1).
  • [2] Atkinson R.H., A volumetric method for the rapid assay of palladium jewellery alloys, Analyst, 79-939 (1954) 368-370.
  • [3] Faurschou A., Kapa E. A., Metal allergen of the 21st century—a review on exposure, epidemiology and clinical manifestations of palladium allergy, Contact Dermatitis, 64-4 (2011) 185-195.
  • [4] Garrett C. E. P., Kapa, The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd‐catalyzed reactions, Advanced Synthesis & Catalysis, 346-8 (2004) 889-900.
  • [5] Torborg C., Beller M., Recent applications of palladium‐catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries, Advanced Synthesis & Catalysis, 351-18 (2009) 3027-3043.
  • [6] Doucet H. H., Jean-Cyrille, Palladium coupling catalysts for pharmaceutical applications, Current opinion in drug discovery & development, 10-6 (2007) 672-690.
  • [7] Ray S., Mohan R., Singh J. K., Samantaray MK, Shaikh MM., Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes, Journal of the American Chemical Society, 129-48 (2007) 15042-15053.
  • [8] Schmidt A., Molano V., Hollering M., Pöthig A., Casini A., Kühn F. E., Evaluation of new palladium cages as potential delivery systems for the anticancer drug cisplatin, Chemistry–A European Journal, 22-7 (2016) 2253-2256.
  • [9] Khan H., Badshah A., Murtaz G. , Said M., Rehman Z.-ur, Neuhausen C., Todorova M., Jean-Claude B. J., Butler I. S., Synthesis, characterization and anticancer studies of mixed ligand dithiocarbamate palladium (II) complexes, European journal of medicinal chemistry, 46-9 (2011) 4071-4077.
  • [10] Rebolledo A. P., Vieites M., Gambino D., Piro O. E., Castellano E. E., Palladium (II) complexes of 2-benzoylpyridine-derived thiosemicarbazones: spectral characterization, structural studies and cytotoxic activity, Journal of inorganic biochemistry, 99-3 (2005) 698-706.
  • [11] Matesanz, A. I. P., José M., Navarro P., Moreno J. M., Colacio E., Souza P., Synthesis and characterization of novel palladium (II) complexes of bis (thiosemicarbazone). Structure, cytotoxic activity and DNA binding of Pd (II)-benzyl bis (thiosemicarbazonate), Journal of inorganic biochemistry, 76-1 (1999) 29-37.
  • [12] Ohff M., Ohff A., van der Boom M. E., Milstein D., Highly active Pd (II) PCP-type catalysts for the Heck reaction, Journal of the American Chemical Society, 119-48 (1997) 11687-11688.
  • [13] Old D. W., Wolfe J. P., Buchwald S. L., A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides, Journal of the American Chemical Society, 120-37 (1998) 9722-9723.
  • [14] Dai C. F., Gregory C., The first general method for palladium-catalyzed Negishi cross-coupling of aryl and vinyl chlorides: use of commercially available Pd (P (t-Bu) 3) 2 as a catalyst, Journal of the American Chemical Society, 123-12 (2001) 2719-2724.
  • [15] Shapiro A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow: In Two Volumes. 1953: Wiley.
  • [16] Von Bertalanffy L., The theory of open systems in physics and biology, Science, 111-2872 (1950) 23-29.
  • [17] Frank H. S., Evans M. W., Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes, The Journal of Chemical Physics, 13-11 (1945) 507-532.
  • [18] Guggenheim E. A., Thermodynamics-an advanced treatment for chemists and physicists, Amsterdam, North-Holland, 414 (1985) 1985.
  • [19] Hossain M. I., Ajoy K., Synthesis and Characterization of Ammonium Ionic Liquids and Their Antimicrobial and Computational Overview, Asian journal of chemical science, 3-4 (2018) 1-10.
  • [20] Hossain M. I., Kumer A., Begum S. H., Synthesis and Characterization of Ammonium Benzoate and Its Derivative Based Ionic Liquids and Their Antimicrobial Studies, Asian journal of physical and chemical science, 3-4 (2018) 1-9.
  • [21] Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98-7 (1993) 5648-5652.
  • [22] Janak, J. F., Proof that∂ E∂ n i= ε in density-functional theory, Physical Review, 18-12 (1978) 7165.
  • [23] Howard A., McIver J., Collins J., Hyperchem computational chemistry, Hypercube Inc., Waterloo, 1994.
  • [24] Gill P. M. J., Johnson B. G., Pople J. A., Frisch M. J, The performance of the Becke—Lee—Yang—Parr (B—LYP) density functional theory with various basis sets, Chemical Physics Letters, 197-4,5 (1992) 499-505.
  • [25] Miehlich B., Savin A., Stoll H., Preuss H., Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr, Chemical Physics Letters, 157-3 (1989) 200-206.
  • [26] Lechner W., Dellago C., Accurate determination of crystal structures based on averaged local bond order parameters, The Journal of chemical physics, 129-11 (2008) 114707.
  • [27] Kumer A., Ahmed B., Sharif Md A., Al-Mamun A., A Theoretical Study of Aniline and Nitrobenzene by Computational Overview, Asian journal of physical and chemical science, 4-2 (2017) 1-12.
  • [28] Koopmans Y. T., Uber die zuordnung von wellenfunktionen und eigenwerten zu den,einzelnen elektronen eines atoms, Physica, 1-1,6 (1934) 104-113.
  • [29] Canadell E., Ravy S., Pouget J. P., Brossard L., Concerning the band structure of D (M (dmit) 2) 2 (D= TTF, Cs, NMe4); M= Ni, Pd) molecular conductors and superconductors: Role of the M (dmit) 2 Homo and Lumo, Solid State Communications, 75-8 (1990) 633-638.
  • [30] Böhm M., Stürzebecher J, Klebe G., Three-dimensional quantitative structure− activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa, Journal of medicinal chemistry, 42-3 (1999) 458-477.
  • [31] Timofeeva L., Kleshcheva N., Antimicrobial polymers: mechanism of action, factors of activity, and applications, Applied microbiology and biotechnology, 89-3 (2011) 475-492.
  • [32] Kumer A., Sarker N., Paul S., Zannat A., The Theoretical Prediction of Thermophysical properties, HOMO, LUMO, QSAR and Biological Indics of Cannabinoids (CBD) and Tetrahhdrocannabinol (THC) by Computational Chemistry, Advanced Journal of Chemistry, 3-3 (2019) 1-13.
  • [33] Kumer A., Sarker M. N., Paul S., The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming, International Journal of Chemistry and Technology, 3-1 (2019) 26-37.
  • [34] Almi Z., Belaidi S., Lanez T., Tchour N., Structure Activity Relationships, QSAR Modeling and Drug-like calculations of TP inhibition of 1,3,4- oxadiazoline-2-thione Derivatives, International Letters of Chemistry, Physics and Astronomy, 37 (2014) 113-124.

The Comparison of Primary, Secondary and Tertiary Amine Ligands on Palladium (II) Complex Ion on Thermo-Physical, Chemical Reactivity, and Biological Properties: A DFT Study

Year 2019, Volume: 40 Issue: 3, 679 - 694, 30.09.2019
https://doi.org/10.17776/csj.549426

Abstract

The Palladium is considered
as the catalyst for coupling reaction and useful metal in industry. The
thermo-physical, chemical reactivity and biological interaction are considered
the most expected parameters for use in any area of the chemical industry, the
pharmaceutical industry, and academia. The palladium (II) complex ion with
different amine ligands are considered under theoretical study by the method of
density functional theory (DFT). Some thermo-physical parameters such as free
energy, entropy, dipole moment, binding energy, nuclear energy, electronics
energy, heat of formation, reactivity properties of molecule like Highest
Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO),
HOMO-LUMO gap, ionization potential, electronegativity, hardness, softness and
electron affinity, and biological properties of molecules like charge density,
surface area grid, volume, LogP, polarizibility, refractivity, molecular mass,
PIC50 were calculated using the computational program of DFT method. The value
of HOMO LUMO gap is 10.78, 0.59, 0.50, and 10.73 and PIC50 is -20.41, -8.46,
-1.69, and 1.83 for L01, L02, L03, and L04 respectively while the chemical
stability is same for L02, and L03, similarly L01 and L04.  The QSAR study provides information about
their correlation and biological activity as drugs whereas the biological
activity was increased with increasing methyl groups. The four palladium (II)
complex ions with amine ligands have strong biological activity for L03 and
L04, and occur the correlation on thermophysical, chemical reactivity.

References

  • [1] Valderrama S., Van Roekel N., Andersson M., Goodacre C. J., Munoz C. A., A comparison of the marginal and internal adaptation of titanium and gold-platinum-palladium metal ceramic crowns, International Journal of Prosthodontics, 1995. 8(1).
  • [2] Atkinson R.H., A volumetric method for the rapid assay of palladium jewellery alloys, Analyst, 79-939 (1954) 368-370.
  • [3] Faurschou A., Kapa E. A., Metal allergen of the 21st century—a review on exposure, epidemiology and clinical manifestations of palladium allergy, Contact Dermatitis, 64-4 (2011) 185-195.
  • [4] Garrett C. E. P., Kapa, The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd‐catalyzed reactions, Advanced Synthesis & Catalysis, 346-8 (2004) 889-900.
  • [5] Torborg C., Beller M., Recent applications of palladium‐catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries, Advanced Synthesis & Catalysis, 351-18 (2009) 3027-3043.
  • [6] Doucet H. H., Jean-Cyrille, Palladium coupling catalysts for pharmaceutical applications, Current opinion in drug discovery & development, 10-6 (2007) 672-690.
  • [7] Ray S., Mohan R., Singh J. K., Samantaray MK, Shaikh MM., Anticancer and antimicrobial metallopharmaceutical agents based on palladium, gold, and silver N-heterocyclic carbene complexes, Journal of the American Chemical Society, 129-48 (2007) 15042-15053.
  • [8] Schmidt A., Molano V., Hollering M., Pöthig A., Casini A., Kühn F. E., Evaluation of new palladium cages as potential delivery systems for the anticancer drug cisplatin, Chemistry–A European Journal, 22-7 (2016) 2253-2256.
  • [9] Khan H., Badshah A., Murtaz G. , Said M., Rehman Z.-ur, Neuhausen C., Todorova M., Jean-Claude B. J., Butler I. S., Synthesis, characterization and anticancer studies of mixed ligand dithiocarbamate palladium (II) complexes, European journal of medicinal chemistry, 46-9 (2011) 4071-4077.
  • [10] Rebolledo A. P., Vieites M., Gambino D., Piro O. E., Castellano E. E., Palladium (II) complexes of 2-benzoylpyridine-derived thiosemicarbazones: spectral characterization, structural studies and cytotoxic activity, Journal of inorganic biochemistry, 99-3 (2005) 698-706.
  • [11] Matesanz, A. I. P., José M., Navarro P., Moreno J. M., Colacio E., Souza P., Synthesis and characterization of novel palladium (II) complexes of bis (thiosemicarbazone). Structure, cytotoxic activity and DNA binding of Pd (II)-benzyl bis (thiosemicarbazonate), Journal of inorganic biochemistry, 76-1 (1999) 29-37.
  • [12] Ohff M., Ohff A., van der Boom M. E., Milstein D., Highly active Pd (II) PCP-type catalysts for the Heck reaction, Journal of the American Chemical Society, 119-48 (1997) 11687-11688.
  • [13] Old D. W., Wolfe J. P., Buchwald S. L., A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides, Journal of the American Chemical Society, 120-37 (1998) 9722-9723.
  • [14] Dai C. F., Gregory C., The first general method for palladium-catalyzed Negishi cross-coupling of aryl and vinyl chlorides: use of commercially available Pd (P (t-Bu) 3) 2 as a catalyst, Journal of the American Chemical Society, 123-12 (2001) 2719-2724.
  • [15] Shapiro A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow: In Two Volumes. 1953: Wiley.
  • [16] Von Bertalanffy L., The theory of open systems in physics and biology, Science, 111-2872 (1950) 23-29.
  • [17] Frank H. S., Evans M. W., Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes, The Journal of Chemical Physics, 13-11 (1945) 507-532.
  • [18] Guggenheim E. A., Thermodynamics-an advanced treatment for chemists and physicists, Amsterdam, North-Holland, 414 (1985) 1985.
  • [19] Hossain M. I., Ajoy K., Synthesis and Characterization of Ammonium Ionic Liquids and Their Antimicrobial and Computational Overview, Asian journal of chemical science, 3-4 (2018) 1-10.
  • [20] Hossain M. I., Kumer A., Begum S. H., Synthesis and Characterization of Ammonium Benzoate and Its Derivative Based Ionic Liquids and Their Antimicrobial Studies, Asian journal of physical and chemical science, 3-4 (2018) 1-9.
  • [21] Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98-7 (1993) 5648-5652.
  • [22] Janak, J. F., Proof that∂ E∂ n i= ε in density-functional theory, Physical Review, 18-12 (1978) 7165.
  • [23] Howard A., McIver J., Collins J., Hyperchem computational chemistry, Hypercube Inc., Waterloo, 1994.
  • [24] Gill P. M. J., Johnson B. G., Pople J. A., Frisch M. J, The performance of the Becke—Lee—Yang—Parr (B—LYP) density functional theory with various basis sets, Chemical Physics Letters, 197-4,5 (1992) 499-505.
  • [25] Miehlich B., Savin A., Stoll H., Preuss H., Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr, Chemical Physics Letters, 157-3 (1989) 200-206.
  • [26] Lechner W., Dellago C., Accurate determination of crystal structures based on averaged local bond order parameters, The Journal of chemical physics, 129-11 (2008) 114707.
  • [27] Kumer A., Ahmed B., Sharif Md A., Al-Mamun A., A Theoretical Study of Aniline and Nitrobenzene by Computational Overview, Asian journal of physical and chemical science, 4-2 (2017) 1-12.
  • [28] Koopmans Y. T., Uber die zuordnung von wellenfunktionen und eigenwerten zu den,einzelnen elektronen eines atoms, Physica, 1-1,6 (1934) 104-113.
  • [29] Canadell E., Ravy S., Pouget J. P., Brossard L., Concerning the band structure of D (M (dmit) 2) 2 (D= TTF, Cs, NMe4); M= Ni, Pd) molecular conductors and superconductors: Role of the M (dmit) 2 Homo and Lumo, Solid State Communications, 75-8 (1990) 633-638.
  • [30] Böhm M., Stürzebecher J, Klebe G., Three-dimensional quantitative structure− activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa, Journal of medicinal chemistry, 42-3 (1999) 458-477.
  • [31] Timofeeva L., Kleshcheva N., Antimicrobial polymers: mechanism of action, factors of activity, and applications, Applied microbiology and biotechnology, 89-3 (2011) 475-492.
  • [32] Kumer A., Sarker N., Paul S., Zannat A., The Theoretical Prediction of Thermophysical properties, HOMO, LUMO, QSAR and Biological Indics of Cannabinoids (CBD) and Tetrahhdrocannabinol (THC) by Computational Chemistry, Advanced Journal of Chemistry, 3-3 (2019) 1-13.
  • [33] Kumer A., Sarker M. N., Paul S., The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming, International Journal of Chemistry and Technology, 3-1 (2019) 26-37.
  • [34] Almi Z., Belaidi S., Lanez T., Tchour N., Structure Activity Relationships, QSAR Modeling and Drug-like calculations of TP inhibition of 1,3,4- oxadiazoline-2-thione Derivatives, International Letters of Chemistry, Physics and Astronomy, 37 (2014) 113-124.
There are 34 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Natural Sciences
Authors

Mohammad Jahidul Islam 0000-0002-4125-8222

Md. Nuruzzaman Sarker 0000-0003-2760-0113

Ajoy Kumer 0000-0001-5136-6166

Sunanda Paul 0000-0001-7739-4018

Publication Date September 30, 2019
Submission Date April 4, 2019
Acceptance Date September 11, 2019
Published in Issue Year 2019Volume: 40 Issue: 3

Cite

APA Islam, M. J., Sarker, M. N., Kumer, A., Paul, S. (2019). The Comparison of Primary, Secondary and Tertiary Amine Ligands on Palladium (II) Complex Ion on Thermo-Physical, Chemical Reactivity, and Biological Properties: A DFT Study. Cumhuriyet Science Journal, 40(3), 679-694. https://doi.org/10.17776/csj.549426