Araştırma Makalesi
BibTex RIS Kaynak Göster

Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds

Yıl 2019, Cilt: 40 Sayı: 1, 125 - 135, 22.03.2019
https://doi.org/10.17776/csj.505746

Öz

Polymeric
electrospun fibers present well-design scaffolds for wound healing
applications. Here, the fabrication of biobased polyurethane (PU) blend fibers
containing curcumin (Cur) was reported. Not only polymer concentration but also
curcumin concentration affects the morphology, diameter, and contact angle
values of the fibers. Morphological investigations revealed that the diameter
and hydrophilicity of the PU fibers increased upon addition of curcumin. Effect
of process parameters (applied voltage, flow rate, and tip-to-collector
distance) on the average diameter and the hydrophilicity of the PU and PU/Cur
fibers were examined. Optimum conditions to obtain uniform and bead-free PU/Cur
fibers were determined as 12.5 kV, 1
mL/h, and 17 cm. This study demonstrates that the electrospinning process
provides a simple way of obtaining bioactive agent loaded fibrous scaffolds, as
well as contributing to a better understanding of the effect of process
variables in the fabrication of PU/Cur blend fibers for wound healing
applications.

Kaynakça

  • [1]. Moura, D., M.T. Souza, L. Liverani, G. Rella, G.M. Luz, J.F. Mano, and A.R. Boccaccini, Development of a bioactive glass-polymer composite for wound healing applications. Mater. Sci. Eng. C-Mater. Biol. Appl., 76 (2017) 224-232.
  • [2]. Regnier, T., S. Combrinck, and W. Du Plooy, Essential oils and other plant extracts as food preservatives. (2012) 539-579.
  • [3]. Christaki, E., E. Bonos, I. Giannenas, and P. Florou-Paneri, Aromatic plants as a source of bioactive compounds. 2 (2012) 228-243.
  • [4]. Sarkic, A. and I. Stappen, Essential oils and their single compounds in cosmetics—a critical review. 5 (2018) 11.
  • [5]. Pizzo, P., C. Scapin, M. Vitadello, C. Florean, and L. Gorza, Grp94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells. J. Cell. Mol. Med., 14 (2010) 970-981.
  • [6]. Aziz, M.T.A., M.F. El-Asmar, I.N. El-Ibrashy, A.M. Rezq, A.L. Al-Malki, M.A. Wassef, H.H. Fouad, H.H. Ahmed, F.M. Taha, A.A. Hassouna, and H.M. Morsi, Effect of novel water soluble curcumin derivative on experimental type-1 diabetes mellitus (short term study). Diabetol. Metab. Syndr., 4 (2012) 30.
  • [7]. Lee, Y.K., W.S. Lee, J.T. Hwang, D.Y. Kwon, Y.J. Surh, and O.J. Park, Curcumin Exerts Antidifferentiation Effect through AMPK alpha-PPAR-gamma in 3T3-L1 Adipocytes and Antiproliferatory Effect through AMPK alpha-COX-2 in Cancer Cells. J. Agric. Food Chem., 57 (2009) 305-310.
  • [8]. Jordan, W.C. and C.R. Drew, Curcumin - A natural herb with anti-HIV activity. J. Natl. Med. Assoc., 88 (1996) 333.
  • [9]. Wang, M.E., Y.C. Chen, I.S. Chen, S.C. Hsieh, S.S. Chen, and C.H. Chiu, Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 23 (2012) 1352-1366.
  • [10]. Merrell, J.G., S.W. McLaughlin, L. Tie, C.T. Laurencin, A.F. Chen, and L.S. Nair, Curcumin-loaded poly(epsilon-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol., 36 (2009) 1149-1156.
  • [11]. Kumbar, S.G., R. James, S.P. Nukavarapu, and C.T. Laurencin, Electrospun nanofiber scaffolds: engineering soft tissues. Biomed. Mater., 3 (2008) 034002.
  • [12]. Rieger, K.A., N.P. Birch, and J.D. Schiffman, Designing electrospun nanofiber mats to promote wound healing - a review. J. Mat. Chem. B, 1 (2013) 4531-4541.
  • [13]. Horzum, N., E. Boyaci, A.E. Eroglu, T. Shahwan, and M.M. Demir, Sorption Efficiency of Chitosan Nanofibers toward Metal Ions at Low Concentrations. Biomacromolecules, 11 (2010) 3301-3308.
  • [14]. Suwantong, O., P. Opanasopit, U. Ruktanonchal, and P. Supaphol, Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 48 (2007) 7546-7557.
  • [15]. Unnithan, A.R., P.B.T. Pichiah, G. Gnanasekaran, K. Seenivasan, N.A.M. Barakat, Y.S. Cha, C.H. Jung, A. Shanmugam, and H.Y. Kim, Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloid Surf. A-Physicochem. Eng. Asp., 415 (2012) 454-460.
  • [16]. Dhurai, B., S. Nachimuthu, Maheswaran, G. Kumar, and R. Babu, Electrospinning of Chitosan Nanofibres Loaded with Curcumin for Wound Healing. J. Polym. Mater., 30 (2013) 471-483.
  • [17]. Dhurai, B., N. Saraswathy, R. Maheswaran, P. Sethupathi, P. Vanitha, S. Vigneshwaran, and V. Rameshbabu, Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Front. Mater. Sci., 7 (2013) 350-361.
  • [18]. Perumal, G., S. Pappuru, D. Chakraborty, A.M. Nandkumar, D.K. Chand, and M. Doble, Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng. C-Mater. Biol. Appl., 76 (2017) 1196-1204.
  • [19]. Mutlu, G., S. Calamak, K. Ulubayram, and E. Guven, Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J. Drug Deliv. Sci. Technol., 43 (2018) 185-193.
  • [20]. Shababdoust, A., M. Ehsani, P. Shokrollahi, and M. Zandi, Fabrication of curcumin-loaded electrospun nanofiberous polyurethanes with anti-bacterial activity. Prog. Biomater., 7 (2018) 23-33.
  • [21]. Sedghi, R., N. Sayyari, A. Shaabani, H. Niknejad, and T. Tayebi, Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer, 142 (2018) 244-255.
  • [22]. Li, J.Z., Y. Hu, T. He, M.W. Huang, X.C. Zhang, J.Y. Yuan, Y. Wei, X.M. Dong, W. Liu, F. Ko, and W.Y. Zhou, Electrospun Sandwich-Structure Composite Membranes for Wound Dressing Scaffolds with High Antioxidant and Antibacterial Activity. Macromol. Mater. Eng., 303 (2018) 17002270.
  • [23]. Sedghi, R. and A. Shaabani, Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer, 101 (2016) 151-157.
  • [24]. Reneker, D.H. and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer, 49 (2008) 2387-2425.
  • [25]. Maheshwari, R.K., A.K. Singh, J. Gaddipati, and R.C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci., 78 (2006) 2081-2087.
  • [26]. He, T., J.N. Wang, P.L. Huang, B.Z. Zeng, H.H. Li, Q.Y. Cao, S.Y. Zhang, Z.O. Luo, D.Y.B. Deng, H.W. Zhang, and W.Y. Zhou, Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloid Surf. B-Biointerfaces, 130 (2015) 278-286.
  • [27]. Haider, S., Y. Al-Zeghayer, F.A.A. Ali, A. Haider, A. Mahmood, W.A. Al-Masry, M. Imran, and M.O. Aijaz, Highly aligned narrow diameter chitosan electrospun nanofibers. J. Polym. Res., 20 (2013) 105.
  • [28]. Tsekova, P.B., M.G. Spasova, N.E. Manolova, N.D. Markova, and I.B. Rashkov, Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater. Sci. Eng. C-Mater. Biol. Appl., 73 (2017) 206-214.
  • [29]. Zhang, X., F. Shi, J. Niu, Y.G. Jiang, and Z.Q. Wang, Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem., 18 (2008) 621-633.
  • [30]. Hoang, M.S., D. N.H., and H. D.P., Fabrication of Curcumin Loaded Nano Polycaprolactone/Chitosan Nonwoven Fabric via Electrospinning Technique. J. Sci. Technol., 55 (2017) 99–108.
  • [31]. Rezaei, A. and A. Nasirpour, Encapsulation of curcumin using electrospun almond gum nanofibers: fabrication and characterization. Int. J. Food Prop., 21 (2018) 1608-1618.
  • [32]. Fallah, M., S.H. Bahrami, and M. Ranjbar-Mohammadi, Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. J. Ind. Text., 46 (2016) 562-577.
  • [33]. Moradkhannejhad, L., M. Abdouss, N. Nikfarjam, S. Mazinani, and P. Sayar, Electrospun curcumin loaded poly (lactic acid) nanofiber mat on the flexible crosslinked PVA/PEG membrane film: Characterization and in vitro release kinetic study. 18 (2017) 2349-2360.
  • [34]. Matabola, K.P. and R.M. Moutloali, The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. J. Mater. Sci., 48 (2013) 5475-5482.
  • [35]. Haider, A., S. Haider, and I.K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem., 11 (2018) 1165-1188.
  • [36]. Maleknia, L., M. Dilamian, M.K. Pilehrood, H. Sadeghi-Aliabadi, and A.H. Hekmati, Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds. Res. Pharm. Sci., 13 (2018) 273-282.
  • [37]. Sun, X.Z., G.R. Williams, X.X. Hou, and L.M. Zhu, Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr. Polym., 94 (2013) 147-153.
  • [38]. Zhou, Y.S., D.Z. Yang, X.M. Chen, Q. Xu, F.M. Lu, and J. Nie, Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules, 9 (2008) 349-354.
  • [39]. Dias, R.C.M., A.M. Goes, R. Serakides, E. Ayres, and R.L. Orefice, Porous Biodegradable Polyurethane Nanocomposites: Preparation, Characterization, and Biocompatibility Tests. Mater. Res.-Ibero-am. J. Mater., 13 (2010) 211-218.

Kurkumin Yüklü Biyo-Bazlı Elektroeğirme Poliüretan Yapılar

Yıl 2019, Cilt: 40 Sayı: 1, 125 - 135, 22.03.2019
https://doi.org/10.17776/csj.505746

Öz

Polimerik
elektroeğirme lifler, yara iyileşme uygulamaları için iyi tasarımlı iskeleler
sunmaktadır. Burada, kurkumin (Cur) içeren biyobazlı poliüretan (PU) karışım
liflerin üretimi rapor edilmektedir.
Yalnızca
polimer konsantrasyonu değil, aynı zamanda kurkumin konsantrasyonu, fiberlerin
morfolojisi, çapı ve temas açısı değerlerini etkilemiştir. Morfolojik
araştırmalar, PU liflerinin çapının ve hidrofilikliğinin kurkumin ilavesi
üzerine arttığını ortaya koymuştur. Proses parametrelerinin (uygulanan voltaj,
akış hızı ve uçtan toplayıcıya mesafe) PU ve PU/Cur liflerinin ortalama çap ve
hidrofilikliği üzerindeki etkileri incelenmiştir. Homojen ve boncuksuz PU/Cur
lif elde etmek için optimum koşullar 12.5 kV, 1 mL/s ve 17 cm olarak
belirlenmiştir. Bu çalışma, elektroeğirme işleminin, biyoaktif madde yüklü
lifli iskeleleri elde etmenin basit bir yolunu sağlamasının yanı sıra, PU/Cur
karışım liflerinin imalatında yara iyileşmesi uygulamaları için işlem
değişkenlerinin etkisinin daha iyi anlaşılmasına katkıda bulunduğunu
göstermektedir.

Kaynakça

  • [1]. Moura, D., M.T. Souza, L. Liverani, G. Rella, G.M. Luz, J.F. Mano, and A.R. Boccaccini, Development of a bioactive glass-polymer composite for wound healing applications. Mater. Sci. Eng. C-Mater. Biol. Appl., 76 (2017) 224-232.
  • [2]. Regnier, T., S. Combrinck, and W. Du Plooy, Essential oils and other plant extracts as food preservatives. (2012) 539-579.
  • [3]. Christaki, E., E. Bonos, I. Giannenas, and P. Florou-Paneri, Aromatic plants as a source of bioactive compounds. 2 (2012) 228-243.
  • [4]. Sarkic, A. and I. Stappen, Essential oils and their single compounds in cosmetics—a critical review. 5 (2018) 11.
  • [5]. Pizzo, P., C. Scapin, M. Vitadello, C. Florean, and L. Gorza, Grp94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells. J. Cell. Mol. Med., 14 (2010) 970-981.
  • [6]. Aziz, M.T.A., M.F. El-Asmar, I.N. El-Ibrashy, A.M. Rezq, A.L. Al-Malki, M.A. Wassef, H.H. Fouad, H.H. Ahmed, F.M. Taha, A.A. Hassouna, and H.M. Morsi, Effect of novel water soluble curcumin derivative on experimental type-1 diabetes mellitus (short term study). Diabetol. Metab. Syndr., 4 (2012) 30.
  • [7]. Lee, Y.K., W.S. Lee, J.T. Hwang, D.Y. Kwon, Y.J. Surh, and O.J. Park, Curcumin Exerts Antidifferentiation Effect through AMPK alpha-PPAR-gamma in 3T3-L1 Adipocytes and Antiproliferatory Effect through AMPK alpha-COX-2 in Cancer Cells. J. Agric. Food Chem., 57 (2009) 305-310.
  • [8]. Jordan, W.C. and C.R. Drew, Curcumin - A natural herb with anti-HIV activity. J. Natl. Med. Assoc., 88 (1996) 333.
  • [9]. Wang, M.E., Y.C. Chen, I.S. Chen, S.C. Hsieh, S.S. Chen, and C.H. Chiu, Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. J. Nutr. Biochem., 23 (2012) 1352-1366.
  • [10]. Merrell, J.G., S.W. McLaughlin, L. Tie, C.T. Laurencin, A.F. Chen, and L.S. Nair, Curcumin-loaded poly(epsilon-caprolactone) nanofibres: Diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin. Exp. Pharmacol. Physiol., 36 (2009) 1149-1156.
  • [11]. Kumbar, S.G., R. James, S.P. Nukavarapu, and C.T. Laurencin, Electrospun nanofiber scaffolds: engineering soft tissues. Biomed. Mater., 3 (2008) 034002.
  • [12]. Rieger, K.A., N.P. Birch, and J.D. Schiffman, Designing electrospun nanofiber mats to promote wound healing - a review. J. Mat. Chem. B, 1 (2013) 4531-4541.
  • [13]. Horzum, N., E. Boyaci, A.E. Eroglu, T. Shahwan, and M.M. Demir, Sorption Efficiency of Chitosan Nanofibers toward Metal Ions at Low Concentrations. Biomacromolecules, 11 (2010) 3301-3308.
  • [14]. Suwantong, O., P. Opanasopit, U. Ruktanonchal, and P. Supaphol, Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer, 48 (2007) 7546-7557.
  • [15]. Unnithan, A.R., P.B.T. Pichiah, G. Gnanasekaran, K. Seenivasan, N.A.M. Barakat, Y.S. Cha, C.H. Jung, A. Shanmugam, and H.Y. Kim, Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloid Surf. A-Physicochem. Eng. Asp., 415 (2012) 454-460.
  • [16]. Dhurai, B., S. Nachimuthu, Maheswaran, G. Kumar, and R. Babu, Electrospinning of Chitosan Nanofibres Loaded with Curcumin for Wound Healing. J. Polym. Mater., 30 (2013) 471-483.
  • [17]. Dhurai, B., N. Saraswathy, R. Maheswaran, P. Sethupathi, P. Vanitha, S. Vigneshwaran, and V. Rameshbabu, Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Front. Mater. Sci., 7 (2013) 350-361.
  • [18]. Perumal, G., S. Pappuru, D. Chakraborty, A.M. Nandkumar, D.K. Chand, and M. Doble, Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng. C-Mater. Biol. Appl., 76 (2017) 1196-1204.
  • [19]. Mutlu, G., S. Calamak, K. Ulubayram, and E. Guven, Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J. Drug Deliv. Sci. Technol., 43 (2018) 185-193.
  • [20]. Shababdoust, A., M. Ehsani, P. Shokrollahi, and M. Zandi, Fabrication of curcumin-loaded electrospun nanofiberous polyurethanes with anti-bacterial activity. Prog. Biomater., 7 (2018) 23-33.
  • [21]. Sedghi, R., N. Sayyari, A. Shaabani, H. Niknejad, and T. Tayebi, Novel biocompatible zinc-curcumin loaded coaxial nanofibers for bone tissue engineering application. Polymer, 142 (2018) 244-255.
  • [22]. Li, J.Z., Y. Hu, T. He, M.W. Huang, X.C. Zhang, J.Y. Yuan, Y. Wei, X.M. Dong, W. Liu, F. Ko, and W.Y. Zhou, Electrospun Sandwich-Structure Composite Membranes for Wound Dressing Scaffolds with High Antioxidant and Antibacterial Activity. Macromol. Mater. Eng., 303 (2018) 17002270.
  • [23]. Sedghi, R. and A. Shaabani, Electrospun biocompatible core/shell polymer-free core structure nanofibers with superior antimicrobial potency against multi drug resistance organisms. Polymer, 101 (2016) 151-157.
  • [24]. Reneker, D.H. and A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer, 49 (2008) 2387-2425.
  • [25]. Maheshwari, R.K., A.K. Singh, J. Gaddipati, and R.C. Srimal, Multiple biological activities of curcumin: A short review. Life Sci., 78 (2006) 2081-2087.
  • [26]. He, T., J.N. Wang, P.L. Huang, B.Z. Zeng, H.H. Li, Q.Y. Cao, S.Y. Zhang, Z.O. Luo, D.Y.B. Deng, H.W. Zhang, and W.Y. Zhou, Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloid Surf. B-Biointerfaces, 130 (2015) 278-286.
  • [27]. Haider, S., Y. Al-Zeghayer, F.A.A. Ali, A. Haider, A. Mahmood, W.A. Al-Masry, M. Imran, and M.O. Aijaz, Highly aligned narrow diameter chitosan electrospun nanofibers. J. Polym. Res., 20 (2013) 105.
  • [28]. Tsekova, P.B., M.G. Spasova, N.E. Manolova, N.D. Markova, and I.B. Rashkov, Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity. Mater. Sci. Eng. C-Mater. Biol. Appl., 73 (2017) 206-214.
  • [29]. Zhang, X., F. Shi, J. Niu, Y.G. Jiang, and Z.Q. Wang, Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem., 18 (2008) 621-633.
  • [30]. Hoang, M.S., D. N.H., and H. D.P., Fabrication of Curcumin Loaded Nano Polycaprolactone/Chitosan Nonwoven Fabric via Electrospinning Technique. J. Sci. Technol., 55 (2017) 99–108.
  • [31]. Rezaei, A. and A. Nasirpour, Encapsulation of curcumin using electrospun almond gum nanofibers: fabrication and characterization. Int. J. Food Prop., 21 (2018) 1608-1618.
  • [32]. Fallah, M., S.H. Bahrami, and M. Ranjbar-Mohammadi, Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. J. Ind. Text., 46 (2016) 562-577.
  • [33]. Moradkhannejhad, L., M. Abdouss, N. Nikfarjam, S. Mazinani, and P. Sayar, Electrospun curcumin loaded poly (lactic acid) nanofiber mat on the flexible crosslinked PVA/PEG membrane film: Characterization and in vitro release kinetic study. 18 (2017) 2349-2360.
  • [34]. Matabola, K.P. and R.M. Moutloali, The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. J. Mater. Sci., 48 (2013) 5475-5482.
  • [35]. Haider, A., S. Haider, and I.K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem., 11 (2018) 1165-1188.
  • [36]. Maleknia, L., M. Dilamian, M.K. Pilehrood, H. Sadeghi-Aliabadi, and A.H. Hekmati, Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds. Res. Pharm. Sci., 13 (2018) 273-282.
  • [37]. Sun, X.Z., G.R. Williams, X.X. Hou, and L.M. Zhu, Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr. Polym., 94 (2013) 147-153.
  • [38]. Zhou, Y.S., D.Z. Yang, X.M. Chen, Q. Xu, F.M. Lu, and J. Nie, Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules, 9 (2008) 349-354.
  • [39]. Dias, R.C.M., A.M. Goes, R. Serakides, E. Ayres, and R.L. Orefice, Porous Biodegradable Polyurethane Nanocomposites: Preparation, Characterization, and Biocompatibility Tests. Mater. Res.-Ibero-am. J. Mater., 13 (2010) 211-218.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Nesrin Horzum Polat 0000-0002-2782-0581

Nehir Arık Kınalı 0000-0002-6724-9463

Yayımlanma Tarihi 22 Mart 2019
Gönderilme Tarihi 31 Aralık 2018
Kabul Tarihi 21 Şubat 2019
Yayımlandığı Sayı Yıl 2019Cilt: 40 Sayı: 1

Kaynak Göster

APA Horzum Polat, N., & Arık Kınalı, N. (2019). Curcumin-Loaded Bio-Based Electrospun Polyurethane Scaffolds. Cumhuriyet Science Journal, 40(1), 125-135. https://doi.org/10.17776/csj.505746