Araştırma Makalesi
BibTex RIS Kaynak Göster

Sınır Koşulunda bir Özdeğer Parametre Bulunan bir Fuzzy Sınır Değer Problemi Üzerine

Yıl 2019, Cilt: 40 Sayı: 1, 1 - 10, 22.03.2019
https://doi.org/10.17776/csj.376952

Öz

Bu çalışmada sınır
koşulunda bir özdeğer parametre içeren bir fuzzy sınır değer problemi
araştırıldı. Bu araştırma Hukuhara diferansiyellenebilirlik yaklaşımı altında
yapıldı. Sınır koşulundaki özdeğer parametrenin problemin özdeğer ve
özfonksiyonu üzerindeki etkisi gösterildi.

Kaynakça

  • [1]. Bede B., Gal S.G., Almost periodic fuzzy-number-valued functions. Fuzzy Sets and Systems, 147 (2004) 385- 403.
  • [2]. Bede B., Gal S.G., Generalizations of the differentibility of fuzzy number value functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 151 (2005) 581-599.
  • [3]. Bede B., Rudas I.J., Bencsik A.L. First order linear fuzzy differential equations under generalized differentiability. Inform. Sci., 177 (2007) 1648-1662.
  • [4]. Buckey J.J., Feuring T., Fuzzy differential equations. Fuzzy Sets and Systems, 110 (2000) 43-54.
  • [5]. Chalco-Cano Y., Roman-Flores H., On new solutions of fuzzy differential equations. Chaos, Solitons & Fractals, 38 (2008) 112-119.
  • [6]. Fard O.S., Esfahani A., Kamyad A.V., On Solution Of A Class Of Fuzzy BVPs. Iranian of Fuzzy Systems, 9(1) (2012) 49-60.
  • [7]. Gasilov N.A., Amrahov A.G., Fatullayev A.G., A geometric approach to solve fuzzy linear systems of differential equations. Appl. Math. Inf. Sci., 5 (2011) 484-495.
  • [8]. Gültekin H., Altınışık N., On solution of two-point fuzzy boundary value problems. Bulletin of Society for Mathematical Services & Standarts, 3(2) (2014) 43-53.
  • [9]. Gültekin Çitil H., Altınışık N., On the Eigenvalues and the Eigenfunctions Of The Sturm- Liouville Fuzzy Boundary Value Problem. Journal of Mathematical and Computational Science, 7(4) (2017) 786-805.
  • [10]. Kaleva O., Fuzzy differential equations. Fuzzy Sets and Systems, 24 (1987) 301-317.
  • [11]. Khastan A., Bahrami F., Ivaz K., New Results on Multiple Solutions for Nth-order Fuzzy Differential Equations under Generalized Differentiability. Boundary Value Problems, 2009; doi:10.1155/395714.
  • [12]. Khastan A., Nieto J.J., A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis, 72 (2010) 3583-3593.
  • [13]. Liu H.K., Comparations results of two-point fuzzy boundary value problems. International Journal of Computational and Mathematical Sciences, 5(1) (2011) 1-7.
  • [14]. Nieto J.J., Khastan A., Ivaz K., Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Anal. Hybrid Syst., 3 (2009) 700-707.

On a Fuzzy Boundary Value Problem with an Eigenvalue Parameter Contained in the Boundary Condition

Yıl 2019, Cilt: 40 Sayı: 1, 1 - 10, 22.03.2019
https://doi.org/10.17776/csj.376952

Öz

A fuzzy boundary value problem with an
eigenvalue parameter contained in the boundary condition is investigated in
this paper. The examination is made under the approach of Hukuhara
differentiability. The effect on the eigenvalue and the eigenfunction of the
problem of the eigenvalue in the boundary condition is shown.

Kaynakça

  • [1]. Bede B., Gal S.G., Almost periodic fuzzy-number-valued functions. Fuzzy Sets and Systems, 147 (2004) 385- 403.
  • [2]. Bede B., Gal S.G., Generalizations of the differentibility of fuzzy number value functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 151 (2005) 581-599.
  • [3]. Bede B., Rudas I.J., Bencsik A.L. First order linear fuzzy differential equations under generalized differentiability. Inform. Sci., 177 (2007) 1648-1662.
  • [4]. Buckey J.J., Feuring T., Fuzzy differential equations. Fuzzy Sets and Systems, 110 (2000) 43-54.
  • [5]. Chalco-Cano Y., Roman-Flores H., On new solutions of fuzzy differential equations. Chaos, Solitons & Fractals, 38 (2008) 112-119.
  • [6]. Fard O.S., Esfahani A., Kamyad A.V., On Solution Of A Class Of Fuzzy BVPs. Iranian of Fuzzy Systems, 9(1) (2012) 49-60.
  • [7]. Gasilov N.A., Amrahov A.G., Fatullayev A.G., A geometric approach to solve fuzzy linear systems of differential equations. Appl. Math. Inf. Sci., 5 (2011) 484-495.
  • [8]. Gültekin H., Altınışık N., On solution of two-point fuzzy boundary value problems. Bulletin of Society for Mathematical Services & Standarts, 3(2) (2014) 43-53.
  • [9]. Gültekin Çitil H., Altınışık N., On the Eigenvalues and the Eigenfunctions Of The Sturm- Liouville Fuzzy Boundary Value Problem. Journal of Mathematical and Computational Science, 7(4) (2017) 786-805.
  • [10]. Kaleva O., Fuzzy differential equations. Fuzzy Sets and Systems, 24 (1987) 301-317.
  • [11]. Khastan A., Bahrami F., Ivaz K., New Results on Multiple Solutions for Nth-order Fuzzy Differential Equations under Generalized Differentiability. Boundary Value Problems, 2009; doi:10.1155/395714.
  • [12]. Khastan A., Nieto J.J., A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis, 72 (2010) 3583-3593.
  • [13]. Liu H.K., Comparations results of two-point fuzzy boundary value problems. International Journal of Computational and Mathematical Sciences, 5(1) (2011) 1-7.
  • [14]. Nieto J.J., Khastan A., Ivaz K., Numerical solution of fuzzy differential equations under generalized differentiability. Nonlinear Anal. Hybrid Syst., 3 (2009) 700-707.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Hülya Gültekin Çitil 0000-0002-3543-033X

Yayımlanma Tarihi 22 Mart 2019
Gönderilme Tarihi 10 Ocak 2018
Kabul Tarihi 13 Ocak 2019
Yayımlandığı Sayı Yıl 2019Cilt: 40 Sayı: 1

Kaynak Göster

APA Gültekin Çitil, H. (2019). On a Fuzzy Boundary Value Problem with an Eigenvalue Parameter Contained in the Boundary Condition. Cumhuriyet Science Journal, 40(1), 1-10. https://doi.org/10.17776/csj.376952

Cited By

Second Order Fuzzy Boundary Value Problem with Fuzzy Parameter
Journal of the Institute of Science and Technology
Tahir CEYLAN
https://doi.org/10.21597/jist.572407