Araştırma Makalesi
BibTex RIS Kaynak Göster

Thermoluminescence Properties of Quartzite Rock after β-irradiation

Yıl 2018, Cilt: 39 Sayı: 4, 1136 - 1143, 24.12.2018
https://doi.org/10.17776/csj.435527

Öz

In the present study, the thermoluminescence
characteristics of natural quartzite collected from Karaisalı (Adana) in Turkey
were investigated after β irradiation at room temperature with the purpose to
use as radiation dosimetry. The glow curve of quartzite mineral shows two peaks
at 110 oC and 250 oC and a shoulder at 375 oC,
explicitly. The resulting peaks, which were examined using the computer glow
curve deconvulation (CGCD) method, were deconvuluted and kinetic parameters
(activation energy Ea,
frequency factor (s) and kinetic
degree (b)) were determined. After
CGCD methods, it was seen that the glow curve suporposed at least eight
peaks.  Additionally, kinetic parameters
were determined using by Arrhenius plot obtained from initial rise (IR) method.
In this study, it is shown that there is a correspondence between kinetic
parameters calculated by IR method and peaks deconvoluated by CGCD technique in
low temperature region (P1-P3). Additionally, reusability test was conducted to
investigate its usability as a dosimetric material, and a change of 2% was
observed in the results of 10 repeated times. Besides to the characterization
of this sample
X-ray diffraction (XRD) and scanning
electron microscopy (
SEM) - energy dispersive X-ray (EDX) results were
investigated.

Kaynakça

  • [1]. McKeever S.W.S., Moscovitch M., Townsend P.D., Thermoluminescence Dosimetry Materials: properties and uses, (1995) Nucl. Technol. Publishing, Asford.
  • [2]. Göksu H. Y., Regulla, D. and Drexler, G. Present status of practical aspects of individual dosimetry. Part II: East European Countries, Radiation Protection–78 Part I, II (Luxemburg: Commission of the European Communities) Belgium (1994).
  • [3]. Planque G.D. and Gesell T.F., Thermoluminescence dosimetry—Environmental applications, The International Journal of Applied Radiation and Isotopes, 33-11 (1982) 1015-1034.
  • [4]. Aitken M. J., Thermoluminescence dating, (1985), Academic Press, London.
  • [5]. Scholefield R. B., Prescott J. R., Franklin A. D., Fox P. J., Observations on some thermoluminescence emission centres in geological quartz, Radiation Measurements, 23 2-3 (1994) 409-412.
  • [6]. Toktamiş H., Necmeddin A. Y., Topaksu M., Investigation of the stability of the radiation sensitivity of TL peaks of quartz extracted from tiles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262 (1) (2007) 69-74.
  • [7]. Yüksel M., Thermoluminescence and dosimetric characteristics study of quartz samples from Seyhan Dam Lake Terracces, Canadian Journal of Physics, In press, doi.org/10.1139/cjp-2017-0741.
  • [8]. Brito Farias T. M. D., Watanabe S., A comparative study of the thermoluminescence properties of several varieties of Brazilian natural quartz, Journal of Luminescence, 132 (10) (2012) 2684-2692.
  • [9]. Subedi B., Oniyab E., Polymeris G.S., Afouxenidis D., Tsirliganis N.C., Kitis G., Thermal quenching of thermoluminescence in quartz samples of various origin, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269 (6) (2011) 572-581.
  • [10]. Cosma C., Timar A. , Benea V., Pop I., Jurcut T., Ciorba D., Using natural luminescent materials and highly sensitive sintered dosimeters MCP-N (LiF:Mg,Cu,P) in radiation dosimetry, Journal of Optoelectronics and Advanced Materials, 10 (3) (2008) 573 – 577.
  • [11]. Trindade N. M., Kahn H., Yoshimura E. M., Thermoluminescence of natural BeAl2O4:Cr3+ Brazilian mineral: Preliminary studies, Journal of Luminescence, 195 (2018) 356-361.
  • [12]. Macedo Z.S., Valerio M.E.G., de Lima J.F., Thermoluminescence mechanism of Mn2+, Mg2+ and Sr2+ doped calcite, Journal of Physics and Chemistry of Solids, 60 (1999) 1973-1981.
  • [13]. Fleming S.J., Study of Thermoluminescence of Crystalline Extracts from Pottery, Archaeometry 9 (1966) 170-173.
  • [14]. Kitis E., Zaragoza C.E., Furetta C., Thermoluminescence properties of Chile Guajillo (paprika) Mexicano. Applied Radiation and Isotopes, 63 (2) (2005) 247-254.
  • [15]. Availible at: https://en.wikipedia.org/wiki/Phengite
  • [16]. Garcia-Guinea J. and Correcher V., Luminescence spectra of alkali feldspars: influence of crushing on the ultraviolet emission band, Spectrosc. Lett., 33 (2000) 103-113.
  • [17]. Murray A.G. and Wintle A.S., Luminescence sensitivity changes in quartz, Radiat. Meas., 30 (1) (1999) 107-118.
  • [18]. Preusser F., Chithambo M.L., Götte T., Martini M., Ramseyer K., Sendezera E.J., Susino G.J., Wintle A.G., Quartz as a natural luminescence dosimeter, Earth-Science Reviews, 97 (1–4), (2009) 184-214.
  • [19]. Puchalska M. and Bilski P., GlowFit—a new tool for thermoluminescence glow-curve deconvolution, Radiation Measurements, 41 6 (2006) 659-664.
  • [20]. Bos A.J.J., Piters, J. M., Gomez Ros J.M. and Delgado A., 1993. (GLOCANIN, an Intercomparision of Glow Curve Analysis Computer Programs) IRI-CIEMAT Report, pp. 131-93-005 IRI Delft.
  • [21]. Chung, K.S., Choe, H.S., Lee, J.I., Kim, J.L. and Chang, S.Y., A computer program for the deconvolution of thermoluminescence glow curves. Radiation Protection Dosimetry, 115 (2005) 1-4.
  • [22]. Topaksu M., Yüksel M., Dogan T., Nur N., Akkaya R., Yegingil Z., Topak Y., Investigation of the characteristics of thermoluminescence glow curves of natural hydrothermal quartz from Hakkari area in Turkey, Physica B: Condensed Matter, 424 (1) (2013) 27-31.
  • [23]. Joseph Daniel, D., Kim, H. J., Kim S., Synthesis, X-ray, and thermoluminescence properties of Li3K3Y7(BO3)9, Ceramics International, 44 (7) (2018) 8184-8189.
  • [24]. Yuksel M., Dogan T., Balci-Yegen S., Akça S., Portakal Z.G., Kucuk N., Topaksu M., Heating rate properties and kinetic parameters of thermoluminescence glow curves of La-doped zinc borate, Radiation Physics and Chemistry, 151 (2018) 149-155.
  • [25]. Furetta C. and Weng P.S., Operational Thermoluminescence Dosimetry, (1998), World Scientific, Singapore.
  • [26]. Furetta C. (2003). Handbook of Thermoluminescence, (2003), World Scientific, Singapore.

β Işınlaması sonrası Kuvarsit Kayacının Termolüminesans Özellikleri

Yıl 2018, Cilt: 39 Sayı: 4, 1136 - 1143, 24.12.2018
https://doi.org/10.17776/csj.435527

Öz

Bu çalışmada, Türkiye’de Karaisalı (Adana)’dan
toplanan doğal kuvarsit kayacının termolüminesans karakteristiği, bir radyasyon
dozimetresi olarak kullanmak amacıyla oda sıcaklığında β ışınlaması yapıldıktan
sonra incelenmiştir. Kuvarsit mineralinin ışıma eğrisi belirgin bir şekilde 110
oC ve 250 oC'de iki tepe noktası ve 375 oC 'de
bir omuzu göstermektedir. Bilgisayarla Işıma Eğrisi Ayrıştırma (CGCD) yöntemi
kullanılarak tepeler ayrıştırılmış ve kinetik parametreler (aktivasyon enerjisi
Ea, frekans faktörü (s) ve kinetik derece (b)) belirlenmiştir. CGCD yönteminden
sonra, bu ışıma eğrisinin en az sekiz tepeden oluştuğu görülmüştür. Ayrıca IR
yönteminden elde edilen Arrhenius grafiği yöntemiyle kinetik parametreler
belirlendi. Bu çalışmada, düşük sıcaklıktaki tepe değerleri için CGCD tekniği
ile ayrılan tepeler ile (P1-P3) IR yöntemi ile hesaplanan kinetik parametreler
arasında bir ilişki olduğu gösterilmiştir. Ek olarak, dozimetrik materyal
olarak kullanılabilirliğini araştırmak için tekrar kullanılabilirlik testi
yapılmış ve 10 kez tekrarlanan sonuçlarda % 2'lik bir değişim gözlenmiştir. Bu
çalışmaların yanında kuvarsit örneğinin karakterizasyonu için X-ışını kırımı
(XRD) ve taramalı elektron mikroskobu (SEM-) enerji yayılımlı X-ışını analizi
(EDX) sonuçları incelendi.

Kaynakça

  • [1]. McKeever S.W.S., Moscovitch M., Townsend P.D., Thermoluminescence Dosimetry Materials: properties and uses, (1995) Nucl. Technol. Publishing, Asford.
  • [2]. Göksu H. Y., Regulla, D. and Drexler, G. Present status of practical aspects of individual dosimetry. Part II: East European Countries, Radiation Protection–78 Part I, II (Luxemburg: Commission of the European Communities) Belgium (1994).
  • [3]. Planque G.D. and Gesell T.F., Thermoluminescence dosimetry—Environmental applications, The International Journal of Applied Radiation and Isotopes, 33-11 (1982) 1015-1034.
  • [4]. Aitken M. J., Thermoluminescence dating, (1985), Academic Press, London.
  • [5]. Scholefield R. B., Prescott J. R., Franklin A. D., Fox P. J., Observations on some thermoluminescence emission centres in geological quartz, Radiation Measurements, 23 2-3 (1994) 409-412.
  • [6]. Toktamiş H., Necmeddin A. Y., Topaksu M., Investigation of the stability of the radiation sensitivity of TL peaks of quartz extracted from tiles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262 (1) (2007) 69-74.
  • [7]. Yüksel M., Thermoluminescence and dosimetric characteristics study of quartz samples from Seyhan Dam Lake Terracces, Canadian Journal of Physics, In press, doi.org/10.1139/cjp-2017-0741.
  • [8]. Brito Farias T. M. D., Watanabe S., A comparative study of the thermoluminescence properties of several varieties of Brazilian natural quartz, Journal of Luminescence, 132 (10) (2012) 2684-2692.
  • [9]. Subedi B., Oniyab E., Polymeris G.S., Afouxenidis D., Tsirliganis N.C., Kitis G., Thermal quenching of thermoluminescence in quartz samples of various origin, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269 (6) (2011) 572-581.
  • [10]. Cosma C., Timar A. , Benea V., Pop I., Jurcut T., Ciorba D., Using natural luminescent materials and highly sensitive sintered dosimeters MCP-N (LiF:Mg,Cu,P) in radiation dosimetry, Journal of Optoelectronics and Advanced Materials, 10 (3) (2008) 573 – 577.
  • [11]. Trindade N. M., Kahn H., Yoshimura E. M., Thermoluminescence of natural BeAl2O4:Cr3+ Brazilian mineral: Preliminary studies, Journal of Luminescence, 195 (2018) 356-361.
  • [12]. Macedo Z.S., Valerio M.E.G., de Lima J.F., Thermoluminescence mechanism of Mn2+, Mg2+ and Sr2+ doped calcite, Journal of Physics and Chemistry of Solids, 60 (1999) 1973-1981.
  • [13]. Fleming S.J., Study of Thermoluminescence of Crystalline Extracts from Pottery, Archaeometry 9 (1966) 170-173.
  • [14]. Kitis E., Zaragoza C.E., Furetta C., Thermoluminescence properties of Chile Guajillo (paprika) Mexicano. Applied Radiation and Isotopes, 63 (2) (2005) 247-254.
  • [15]. Availible at: https://en.wikipedia.org/wiki/Phengite
  • [16]. Garcia-Guinea J. and Correcher V., Luminescence spectra of alkali feldspars: influence of crushing on the ultraviolet emission band, Spectrosc. Lett., 33 (2000) 103-113.
  • [17]. Murray A.G. and Wintle A.S., Luminescence sensitivity changes in quartz, Radiat. Meas., 30 (1) (1999) 107-118.
  • [18]. Preusser F., Chithambo M.L., Götte T., Martini M., Ramseyer K., Sendezera E.J., Susino G.J., Wintle A.G., Quartz as a natural luminescence dosimeter, Earth-Science Reviews, 97 (1–4), (2009) 184-214.
  • [19]. Puchalska M. and Bilski P., GlowFit—a new tool for thermoluminescence glow-curve deconvolution, Radiation Measurements, 41 6 (2006) 659-664.
  • [20]. Bos A.J.J., Piters, J. M., Gomez Ros J.M. and Delgado A., 1993. (GLOCANIN, an Intercomparision of Glow Curve Analysis Computer Programs) IRI-CIEMAT Report, pp. 131-93-005 IRI Delft.
  • [21]. Chung, K.S., Choe, H.S., Lee, J.I., Kim, J.L. and Chang, S.Y., A computer program for the deconvolution of thermoluminescence glow curves. Radiation Protection Dosimetry, 115 (2005) 1-4.
  • [22]. Topaksu M., Yüksel M., Dogan T., Nur N., Akkaya R., Yegingil Z., Topak Y., Investigation of the characteristics of thermoluminescence glow curves of natural hydrothermal quartz from Hakkari area in Turkey, Physica B: Condensed Matter, 424 (1) (2013) 27-31.
  • [23]. Joseph Daniel, D., Kim, H. J., Kim S., Synthesis, X-ray, and thermoluminescence properties of Li3K3Y7(BO3)9, Ceramics International, 44 (7) (2018) 8184-8189.
  • [24]. Yuksel M., Dogan T., Balci-Yegen S., Akça S., Portakal Z.G., Kucuk N., Topaksu M., Heating rate properties and kinetic parameters of thermoluminescence glow curves of La-doped zinc borate, Radiation Physics and Chemistry, 151 (2018) 149-155.
  • [25]. Furetta C. and Weng P.S., Operational Thermoluminescence Dosimetry, (1998), World Scientific, Singapore.
  • [26]. Furetta C. (2003). Handbook of Thermoluminescence, (2003), World Scientific, Singapore.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Engineering Sciences
Yazarlar

Tamer Doğan

Yayımlanma Tarihi 24 Aralık 2018
Gönderilme Tarihi 22 Haziran 2018
Kabul Tarihi 12 Temmuz 2018
Yayımlandığı Sayı Yıl 2018Cilt: 39 Sayı: 4

Kaynak Göster

APA Doğan, T. (2018). Thermoluminescence Properties of Quartzite Rock after β-irradiation. Cumhuriyet Science Journal, 39(4), 1136-1143. https://doi.org/10.17776/csj.435527