Araştırma Makalesi
BibTex RIS Kaynak Göster

Hidroksi- ve Sülfonamid- Azobenzen Platin (II) Komplekslerinin Yapısal, Spektroskopik ve Anti-Kanser Özellikleri: DFT ve Moleküler Yerleştirme Çalışmaları

Yıl 2018, Cilt: 39 Sayı: 4, 1036 - 1051, 24.12.2018
https://doi.org/10.17776/csj.421027

Öz

Bidentat ligandlar olan sülfonamid-((E)-2-(4-metilfenilsülfonamido)-2',6'-diizoazobenzen, HL1) ve
hidroksi-azo-2,6-diflorobenzen ((E)-2-((2,6-diflorofenil)diazenil)fenol, HL2)
taşıyan üç platin (II) kompleksi ([Pt(L1)(DMSO)Cl], [Pt(L2)(DMSO)Cl] ve [Pt(L2)2])
en uygun seviye olarak belirlenen B3LYP/6-31+G(d) ve B3LYP/LANL2DZ/6-31+G(d)
seviyesi ile optimize edildi. Optimize yapılardan elde edilen yapısal
parametreler (bağ uzunluklar ve bağ açıları), IR ve 1H, 13C ve 19F-NMR
kimyasal kaymaları deneysel veriler ile kıyaslandı ve sonuçlar deneysel
sonuçlar ile uyumlu olduğu görüldü. A2780 ve A2780CP70 kanser hüclerine karşı
deneysel inhibisyon etkinlikleri
HOMO enerjisi (EHOMO), LUMO enerjisi (ELUMO),
LUMO-HOMO enerji boşluğu (
DE), sertlik (h), yumuşaklık (s), elektronegativite (c) ve kimyasal potansiyel (m) gibi kuantum kimyasal parametreler ile
kıyaslandı. Aktivite yapı arasındaki ilişki incelendi ve ELUMO
deneysel inhibisyon etkinlik sıralaması ile bire bir uyumlu bulundu.
Anti-kanser özellik gösteren ligand ve komplekslerin moleküler elektrostatik
potansiyel (MEP) haritaları incelendi ve HL1 ve HL2 ligandları ve Comp. (1)-(3)
için kanser hücrelerine bağlanma bölgeleri belirlendi. Ayrıca MEP
haritalarından elde edilen elektrostatik potansiyel (ESP) yükleri ile ligandlar
ve komplekslerin kanser hücresine bağlanma kolaylıklarına göre sıralamaları
yapıldı. Elde edilen sıralama deneysel inhibisyon etkinlik sıralaması uyumlu
bulundu. Çalışılan ligand ve kompleksler için Hex.8.0.0 programı ile moleküler
yerleştirme çalışmaları yapıldı. A2780 ve A2780CP70 hücre çizgisine karşılık
gelen hedef proteinler (PDB ID:4M5W ve 5FI4, sırasıyla)  literatürde seçildi. 4M5W ve 5FI4 hedef
proteinleri ile HL1 ve HL2 ligandaların etkileşim enerjileri sırasıyla -300.02,
-240.80 ve -336.64, -247.04 kJ/mol olarak hesaplandı. Kompleksler ile 4M5W ve
5FI4 hedef proteinleri arasındaki bağlanma enerjileri
-387.52, -285.44,
-364.88 ve -399.63, -297.8, -385.323
kJ/mol olarak hesaplandı. Bu sonuçlara göre
deneysel ve hesaplanan inhibisyon etkinlik sıralaması uyumlu bulundu. 

Kaynakça

  • [1] Hu Y., Tabor R.F., Wilkinson B.L., Sweetness and light: design and applications of photo-responsive glycoconjugates, Org. Biomol. Chem., 13-8 (2015) 2216−2225.
  • [2] Velema W.A., Szymanski W., Feringa B.L., Photopharmacology: beyond proof of principle, J. Am. Chem. Soc., 136-6 (2014) 2178−2191.
  • [3] Li J., Wang X.¸ Liang X., Modification of Nucleic Acids by Azobenzene Derivatives and Their Applications in Biotechnology and Nanotechnology, Chem. Asian J., 9-12 (2014) 3344−3358.
  • [4] Kundu P.K., Klajn R., Watching single molecules move in response to light, ACS Nano, 8-12 (2014) 11913−11916.
  • [5] García-Iriepa C., Marazzi M., Frutos L.M., Sampedro D., E/Z Photochemical switches: syntheses, properties and applications, RSC Adv., 3-18 (2013) 6241−6266.
  • [6] Wegner H.A., Azobenzenes in a new light—Switching in vivo, Angew. Chem., Int. Ed., 51-20 (2012) 4787−4788.
  • [7] Bandara H.M.D., Burdette S.C., Photoisomerization in different classes of azobenzene, Chem. Soc. Rev., 41-5 (2012) 1809−1825.
  • [8] Merino E., Synthesis of azobenzenes: the coloured pieces of molecular materials, Chem. Soc. Rev., 40-7 (2011) 3835−3853.
  • [9] Beharry A.A., Woolley G.A., Azobenzene photoswitches for biomolecules, Chem. Soc. Rev., 40-8 (2011) 4422− 4437.
  • [10] Hamon F., Djedaini-Pilard F., Barbot F., Len C., Azobenzenes—synthesis and carbohydrate applications, Tetrahedron, 65-49 (2009) 10105−10123.
  • [11] Samanta S., Ghosh P., Goswami S., Recent advances on the chemistry of transition metal complexes of 2-(arylazo) pyridines and its arylamino derivatives, Dalton Trans., 41-8 (2012) 2213−2226.
  • [12] Muggia F.M., Recent updates in the clinical use of platinum compounds for the treatment of gynecologic cancers., In Semin. Oncol., WB Saunders, 31 (2004) 17–24.
  • [13] Belani C.P., Recent updates in the clinical use of platinum compounds for the treatment of lung, breast, and genitourinary tumors and myeloma, In Semin.Oncol., WB Saunders, 31 (2004) 25–33.
  • [14] Cleare M.J., Hoeschele J.D., Antilt umour Platinum Compounds, Platin. Met. Rev., 17 (1973) 2–13.
  • [15] Cleare M.J., Hoeschele J.D., Studies on the antitumor activity of group VIII transition metal complexes, Bioinorg. Chem., 2-3 (1973) 187–210.
  • [16] Endresi, H., 1985. A hydrogen-bridged dimeric stacked structure in a dioximato complex: (oxamide oximato)(oxamide oxime) platinum (II) iodide dihydrate, [Pt(C2H5N4O2)(C2H5N4O2)]I.2H2O. Acta Cryst. C41, 1047-1049.
  • [17] Guedes da Silva, M. F. C., Izotova, Y. A., Pombeiro, A. J. L., Kukushkin, V. Y., 1998. Manifestation of redox duality of 2-propanone oxime: Pt(II)-assisted reduction versus Pt (IV) - mediated oxidation of Me2O= NOH species. Inorg. Chim. Acta. 277, 83-88.
  • [18] Makarycheva-Mikhailova, A. V., Haukka, M., Bokach, N. A., Garnovskii, D. A., Galanski, M., Keppler, B. K., Pomberio, A. J. L., Kukushkin, V. Y., 2002. Platinum(IV)-mediated coupling of dione monoximes and nitriles: a novel reactivity pattern of the classic oxime-based chelating ligands. New J. Chem. 26, 1085-1091.
  • [19] Köcher, S., Lutz, M., Spek, A. L., Walfort, B., Rüffer, T., van Klink, G. P. M., van Koten, G., Lang, H., 2008. Oxime-substituted NCN-pincer palladium and platinum halide polymers through non-covalent hydrogen bonding (NCN=[C6H2(CH2NMe2)2-2,6]−). Journal of Organometallic Chemistry. 693, 2244-2250.
  • [20] Grabmann, G., Meier, S. M., Scaffidi-Domianello, Y. Y., Galanski, M., Keppler, B. K., Hartinger, C. G., 2012. Capillary zone electrophoresis and capillary zone electrophoresis– electrospray ionization mass spectrometry studies on the behavior of anticancer cis- and trans- [dihalidobis(2-propanone oxime)platinum(II)] complexes in aqueous solutions. Journal of Chromatography A. 1267, 156-161.
  • [21] Deo C., Bogliotti N., Métivier R., Retailleau P., Xie J., Photoswitchable arene ruthenium complexes containing o-sulfonamide azobenzene ligands, Organometallics, 34-24 (2015) 5775−5784.
  • [22] Samper K.G., Marker S.C., Bayón P., MacMillan S.N., Keresztes I., Palacios Ò., Wilson J.J., Anticancer activity of hydroxy-and sulfonamide-azobenzene platinum (II) complexes in cisplatin-resistant ovarian cancer cells, Journal of Inorganic Biochemistry, 174 (2017) 102–110.
  • [23] Dennington II R. D.; Keith T.A.; Millam J.M. GaussView 5.0, Wallingford, CT, 2009.
  • [24] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B & Petersson G A, et al. Gaussian, Inc., Wallingford CT, 2010.
  • [25] Zhurko G.A., Zhurko D.A., ChemCraft, version 1.6, 2009. (http://www. chemcraftprog.com)
  • [26] Roothaan C. C. J., New developments in molecular orbital theory, Rev. Mod. Phys., 23-2 (1951) 69.
  • [27] Awad M.K., Mustafa M.R., Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface, Journal of Molecular Structure: THEOCHEM., 959 (2010) 66–74.
  • [28] Becke A.D., Density‐functional thermochemistry. III. The role of exact Exchange, The Journal of Chemical Physics, 98-7 (1993) 5648–5652.
  • [29] Tüzün B., Kaya C., Investigation of DNA–RNA Molecules for the Efficiency and Activity of Corrosion Inhibition by DFT and Molecular Docking, Journal of Bio- and Tribo-Corrosion 4-69 (2018) 2-11.
  • [30] Üngördü A., Tezer N., Effect on frontier molecular orbitals of substituents in 5-position of uracil base pairs in vacuum and water, Journal of Theoretical and Computational Chemistry, 16-07 (2017) 1750066.
  • [31] Sayin, K., Üngördü, A., Investigation of anticancer properties of caffeinated complexes via computational chemistry methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193 (2018) 147-155.
  • [32] Sarigul M., Erkan S.K., Deveci P., Atabey H., KarakasbD., Kurtoglu M., Multi-properties of a new azo-Schiff base and its binuclear copper (II) chelate: Preparation, spectral characterization, electrochemical, potentiometric and modeling studies. Journal of Molecular Structure, 1149 (2017) 520-529.
  • [33] Karakaş D., Erkan S.K., Theoretical investigation on the vibrational and electronic spectra of three isomeric forms of dicobalt octacarbonyl, Journal of Molecular Structure, 1062 (2014) 77-81.
  • [34] Erkan S.K, Sayın K., Karakaş D., Theoretical Studies on Eight Oxovanadium (IV) Complexes with Salicylaldehyde and Aniline Ligands, Hacettepe J Biol Chem, 42 (2014) 337-342.
  • [35] Drací̌nsky M., Bour P., Hodgkinson P., Temperature dependence of NMR parameters calculated from path integral molecular dynamics simulations, J. Chem. Theory Comput., 12-3 (2016) 968−973.
  • [36] Pearson R. G., Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem., 27-4 (1988) 734-740.
  • [37] Koopmans T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms, Physica, 1 (1934) 104.
  • [38] Muscia G.C., Cazorla S.I., Frank F.M., Borosky G.L., Buldain G.Y., Asís S.E., Malchiodi E.L., Synthesis, trypanocidal activity and molecular modeling studies of 2-alkylaminomethylquinoline derivatives, Eur. J. Med. Chem., 46-9 (2011) 3696-3703.
  • [39] Kushwaha P.S., Mishra P.C., Relationship of hydrogen bonding energy with electrostatic and polarization energies and molecular electrostatic potentials for amino acids: an evaluation of the lock and key model, Int. J. Quant. Chem., 76-6 (2000) 700-713.
  • [40] Wagener M., Sadowysky J., Gasteiger J., Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks, J. Am. Chem. Soc., 117-29 (1995) 7769– 7775.
  • [41] Sayin K., Karakaş D., Erkan S.K., Alagöz Sayin T., Computational study of some fluoroquinolones: Structural, spectral and docking investigations, Journal of Molecular Structure, 1156 (2018) 172-181
  • [42] Qin D., Wang W., Lei H., Luo H., Cai H., Tang C., Wang T., CDDO-Me reveals USP7 as a novel target in ovarian cancer cells, Oncotarget, 7-47 (2016) 77096.
  • [43] Han W., Menezes D.L., Xu Y., Knapp M.S., Elling R., Burger M.T., Ni Z.J., Smith A., Lan J., Williams T.E., Verhagen J., Huh K., Merritt H., Chan J., Kaufman S., Voliva C.F., Pecchi S., Discovery of imidazo [1, 2-a]-pyridine inhibitors of pan-PI3 kinases that are efficacious in a mouse xenograft model. Bioorganic & medicinal chemistry letters, 26-3 (2016) 742-746.

Structural, Spectroscopic and Anti-cancer Properties of Hydroxy- and Sulfonamide-Azobenzene Platinum (II) Complexes: DFT and Molecular Docking Studies

Yıl 2018, Cilt: 39 Sayı: 4, 1036 - 1051, 24.12.2018
https://doi.org/10.17776/csj.421027

Öz

The three platinum (II) complexes ([Pt(L1)(DMSO)Cl], [Pt(L2)(DMSO)Cl]
and [Pt(L2)2]) bearing the bidentate ligands
sulphonamide-((E)-2-(4-methylphenylsulfonamido)-2′,6′-difluoroazobenzene,
HL1)  and hydroxy-azo-2,6-difluorobenzene
((E)-2-((2,6-difluorophenyl)diazenyl)phenol, HL2) were optimized with the optimum
levels of B3LYP/6-31+G(d) and B3LYP/LANL2DZ/6-31+G(d) level. The structural
parameters (bond lengths and ligand angles), IR and 1H, 13C and 19F-NMR
spectra obtained from the optimized structures were compared with the
experimental data and the results were found to be consistent with the
experimental results. Experimental inhibition activities against A2780 and
A2780CP70 cancer cells were compared with quantum chemical parameters such as
HOMO energy (EHOMO), LUMO energy (ELUMO), LUMO-HOMO
energy vacancy (
DE), hardness (h), softness (s), electronegativity (c) and chemical potential
(
m). The relationship
between the molecular structure with the biological activity was examined and ELUMO
order was found to be compatible with the experimental inhibition efficiency
ranking. Molecular electrostatic potential (MEP) maps were studied of ligands
and complexes exhibiting anti-cancer properties and for ligands and complexes,
regions of attachment to cancer cells were determined. In addition,
electrostatic potential (ESP) charges obtained from MEP maps of ligands and
complexes were ranked according to their ease of binding to the cancer cell.
The obtained ranking was found to be in accordance with the experimental
inhibition efficiency order. For studied ligands and complexes, molecular
docking studies were carried out with the Hex.8.0.0 program. The target
proteins (PDB ID: 4M5W and 5FI4, respectively) corresponding to the A2780 and
A2780CP70 cell lines were selected in the literature. The interaction energies
of 4M5W and 5FI4 target proteins with HL1 and HL2 ligands were calculated to be
-300.02, -240.80 and -336.64, -247.04 kJ/mol, respectively. The binding
energies between the complexes and 4M5W and 5FI4 target proteins were
calculated to be -387.52, -285.44, -364.88 and -399.63, -297.8, -385.323
kJ/mol. According to these results, the experimental and calculated inhibition
efficiency order was found to be compatible.

Kaynakça

  • [1] Hu Y., Tabor R.F., Wilkinson B.L., Sweetness and light: design and applications of photo-responsive glycoconjugates, Org. Biomol. Chem., 13-8 (2015) 2216−2225.
  • [2] Velema W.A., Szymanski W., Feringa B.L., Photopharmacology: beyond proof of principle, J. Am. Chem. Soc., 136-6 (2014) 2178−2191.
  • [3] Li J., Wang X.¸ Liang X., Modification of Nucleic Acids by Azobenzene Derivatives and Their Applications in Biotechnology and Nanotechnology, Chem. Asian J., 9-12 (2014) 3344−3358.
  • [4] Kundu P.K., Klajn R., Watching single molecules move in response to light, ACS Nano, 8-12 (2014) 11913−11916.
  • [5] García-Iriepa C., Marazzi M., Frutos L.M., Sampedro D., E/Z Photochemical switches: syntheses, properties and applications, RSC Adv., 3-18 (2013) 6241−6266.
  • [6] Wegner H.A., Azobenzenes in a new light—Switching in vivo, Angew. Chem., Int. Ed., 51-20 (2012) 4787−4788.
  • [7] Bandara H.M.D., Burdette S.C., Photoisomerization in different classes of azobenzene, Chem. Soc. Rev., 41-5 (2012) 1809−1825.
  • [8] Merino E., Synthesis of azobenzenes: the coloured pieces of molecular materials, Chem. Soc. Rev., 40-7 (2011) 3835−3853.
  • [9] Beharry A.A., Woolley G.A., Azobenzene photoswitches for biomolecules, Chem. Soc. Rev., 40-8 (2011) 4422− 4437.
  • [10] Hamon F., Djedaini-Pilard F., Barbot F., Len C., Azobenzenes—synthesis and carbohydrate applications, Tetrahedron, 65-49 (2009) 10105−10123.
  • [11] Samanta S., Ghosh P., Goswami S., Recent advances on the chemistry of transition metal complexes of 2-(arylazo) pyridines and its arylamino derivatives, Dalton Trans., 41-8 (2012) 2213−2226.
  • [12] Muggia F.M., Recent updates in the clinical use of platinum compounds for the treatment of gynecologic cancers., In Semin. Oncol., WB Saunders, 31 (2004) 17–24.
  • [13] Belani C.P., Recent updates in the clinical use of platinum compounds for the treatment of lung, breast, and genitourinary tumors and myeloma, In Semin.Oncol., WB Saunders, 31 (2004) 25–33.
  • [14] Cleare M.J., Hoeschele J.D., Antilt umour Platinum Compounds, Platin. Met. Rev., 17 (1973) 2–13.
  • [15] Cleare M.J., Hoeschele J.D., Studies on the antitumor activity of group VIII transition metal complexes, Bioinorg. Chem., 2-3 (1973) 187–210.
  • [16] Endresi, H., 1985. A hydrogen-bridged dimeric stacked structure in a dioximato complex: (oxamide oximato)(oxamide oxime) platinum (II) iodide dihydrate, [Pt(C2H5N4O2)(C2H5N4O2)]I.2H2O. Acta Cryst. C41, 1047-1049.
  • [17] Guedes da Silva, M. F. C., Izotova, Y. A., Pombeiro, A. J. L., Kukushkin, V. Y., 1998. Manifestation of redox duality of 2-propanone oxime: Pt(II)-assisted reduction versus Pt (IV) - mediated oxidation of Me2O= NOH species. Inorg. Chim. Acta. 277, 83-88.
  • [18] Makarycheva-Mikhailova, A. V., Haukka, M., Bokach, N. A., Garnovskii, D. A., Galanski, M., Keppler, B. K., Pomberio, A. J. L., Kukushkin, V. Y., 2002. Platinum(IV)-mediated coupling of dione monoximes and nitriles: a novel reactivity pattern of the classic oxime-based chelating ligands. New J. Chem. 26, 1085-1091.
  • [19] Köcher, S., Lutz, M., Spek, A. L., Walfort, B., Rüffer, T., van Klink, G. P. M., van Koten, G., Lang, H., 2008. Oxime-substituted NCN-pincer palladium and platinum halide polymers through non-covalent hydrogen bonding (NCN=[C6H2(CH2NMe2)2-2,6]−). Journal of Organometallic Chemistry. 693, 2244-2250.
  • [20] Grabmann, G., Meier, S. M., Scaffidi-Domianello, Y. Y., Galanski, M., Keppler, B. K., Hartinger, C. G., 2012. Capillary zone electrophoresis and capillary zone electrophoresis– electrospray ionization mass spectrometry studies on the behavior of anticancer cis- and trans- [dihalidobis(2-propanone oxime)platinum(II)] complexes in aqueous solutions. Journal of Chromatography A. 1267, 156-161.
  • [21] Deo C., Bogliotti N., Métivier R., Retailleau P., Xie J., Photoswitchable arene ruthenium complexes containing o-sulfonamide azobenzene ligands, Organometallics, 34-24 (2015) 5775−5784.
  • [22] Samper K.G., Marker S.C., Bayón P., MacMillan S.N., Keresztes I., Palacios Ò., Wilson J.J., Anticancer activity of hydroxy-and sulfonamide-azobenzene platinum (II) complexes in cisplatin-resistant ovarian cancer cells, Journal of Inorganic Biochemistry, 174 (2017) 102–110.
  • [23] Dennington II R. D.; Keith T.A.; Millam J.M. GaussView 5.0, Wallingford, CT, 2009.
  • [24] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B & Petersson G A, et al. Gaussian, Inc., Wallingford CT, 2010.
  • [25] Zhurko G.A., Zhurko D.A., ChemCraft, version 1.6, 2009. (http://www. chemcraftprog.com)
  • [26] Roothaan C. C. J., New developments in molecular orbital theory, Rev. Mod. Phys., 23-2 (1951) 69.
  • [27] Awad M.K., Mustafa M.R., Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface, Journal of Molecular Structure: THEOCHEM., 959 (2010) 66–74.
  • [28] Becke A.D., Density‐functional thermochemistry. III. The role of exact Exchange, The Journal of Chemical Physics, 98-7 (1993) 5648–5652.
  • [29] Tüzün B., Kaya C., Investigation of DNA–RNA Molecules for the Efficiency and Activity of Corrosion Inhibition by DFT and Molecular Docking, Journal of Bio- and Tribo-Corrosion 4-69 (2018) 2-11.
  • [30] Üngördü A., Tezer N., Effect on frontier molecular orbitals of substituents in 5-position of uracil base pairs in vacuum and water, Journal of Theoretical and Computational Chemistry, 16-07 (2017) 1750066.
  • [31] Sayin, K., Üngördü, A., Investigation of anticancer properties of caffeinated complexes via computational chemistry methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193 (2018) 147-155.
  • [32] Sarigul M., Erkan S.K., Deveci P., Atabey H., KarakasbD., Kurtoglu M., Multi-properties of a new azo-Schiff base and its binuclear copper (II) chelate: Preparation, spectral characterization, electrochemical, potentiometric and modeling studies. Journal of Molecular Structure, 1149 (2017) 520-529.
  • [33] Karakaş D., Erkan S.K., Theoretical investigation on the vibrational and electronic spectra of three isomeric forms of dicobalt octacarbonyl, Journal of Molecular Structure, 1062 (2014) 77-81.
  • [34] Erkan S.K, Sayın K., Karakaş D., Theoretical Studies on Eight Oxovanadium (IV) Complexes with Salicylaldehyde and Aniline Ligands, Hacettepe J Biol Chem, 42 (2014) 337-342.
  • [35] Drací̌nsky M., Bour P., Hodgkinson P., Temperature dependence of NMR parameters calculated from path integral molecular dynamics simulations, J. Chem. Theory Comput., 12-3 (2016) 968−973.
  • [36] Pearson R. G., Absolute electronegativity and hardness: application to inorganic chemistry, Inorg. Chem., 27-4 (1988) 734-740.
  • [37] Koopmans T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms, Physica, 1 (1934) 104.
  • [38] Muscia G.C., Cazorla S.I., Frank F.M., Borosky G.L., Buldain G.Y., Asís S.E., Malchiodi E.L., Synthesis, trypanocidal activity and molecular modeling studies of 2-alkylaminomethylquinoline derivatives, Eur. J. Med. Chem., 46-9 (2011) 3696-3703.
  • [39] Kushwaha P.S., Mishra P.C., Relationship of hydrogen bonding energy with electrostatic and polarization energies and molecular electrostatic potentials for amino acids: an evaluation of the lock and key model, Int. J. Quant. Chem., 76-6 (2000) 700-713.
  • [40] Wagener M., Sadowysky J., Gasteiger J., Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic Ah receptor activity by neural networks, J. Am. Chem. Soc., 117-29 (1995) 7769– 7775.
  • [41] Sayin K., Karakaş D., Erkan S.K., Alagöz Sayin T., Computational study of some fluoroquinolones: Structural, spectral and docking investigations, Journal of Molecular Structure, 1156 (2018) 172-181
  • [42] Qin D., Wang W., Lei H., Luo H., Cai H., Tang C., Wang T., CDDO-Me reveals USP7 as a novel target in ovarian cancer cells, Oncotarget, 7-47 (2016) 77096.
  • [43] Han W., Menezes D.L., Xu Y., Knapp M.S., Elling R., Burger M.T., Ni Z.J., Smith A., Lan J., Williams T.E., Verhagen J., Huh K., Merritt H., Chan J., Kaufman S., Voliva C.F., Pecchi S., Discovery of imidazo [1, 2-a]-pyridine inhibitors of pan-PI3 kinases that are efficacious in a mouse xenograft model. Bioorganic & medicinal chemistry letters, 26-3 (2016) 742-746.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Sultan Erkan

Yayımlanma Tarihi 24 Aralık 2018
Gönderilme Tarihi 4 Mayıs 2018
Kabul Tarihi 2 Kasım 2018
Yayımlandığı Sayı Yıl 2018Cilt: 39 Sayı: 4

Kaynak Göster

APA Erkan, S. (2018). Structural, Spectroscopic and Anti-cancer Properties of Hydroxy- and Sulfonamide-Azobenzene Platinum (II) Complexes: DFT and Molecular Docking Studies. Cumhuriyet Science Journal, 39(4), 1036-1051. https://doi.org/10.17776/csj.421027