Loading [a11y]/accessibility-menu.js
Kurşunlu ve Kurşunsuz Bi2Sr2Ca2Cu3Oδ Sistemine Seryum Katkısının Yapısal ve Süperiletkenlik Özelliklere Etkileri
Year 2017 ,
Volume: 38 Issue: 3, 492 - 501, 30.09.2017
Hasan Ağıl
Abstract
Bu
çalışmada kurşunsuz ve kurşunlu seryum ilave edilmiş Bi2 Sr2 Ca2 Cu3 Oδ
süperiletken sisteminin termal, yapısal ve süperiletkenlik özellikleri
araştırılmıştır. Bi2-x Pbx Sr2 Ca2 Cu3 Cey Oδ
(x = 0 ve 0.4 ve y = 0, 0.1, 0.2 ve 0.4) genel stokiyometrisine sahip seryum
katkılı süperiletkenler geleneksel katı hal sentezleme tekniği ile
hazırlanmıştır. Malzemeler DTK/TGA, XRD, SEM, EDX ve R-T ölçümleri ile
karakterize edilmiştir. Üretilen malzemelerde elde edilmek istenen faz Bi-2223
fazı olmasına rağmen bazı malzemelerde Bi-2212 fazının baskın olduğu
görülmüştür. Özellikle kurşunsuz malzemelerde ana faz Bi-2212 fazı iken
kurşunlu malzemelerde ise nispeten ana faz Bi-2223 fazıdır. Buna bağlı olarak
kritik sıcaklık değerleri düşmüş ve iki adımda geçiş davranışı
gözlemlenmiştir.
References
[1]. Runde, M.: IEEE Trans. Appl. Supercond. 5, 813 (1995).
[2]. Godeke, A., Cheng, D., Dietderich, D.R., English, C.D., Felice, H., Hannaford, C.R., Prestemon, S.O., Sabbi, G., Scanlan, R.M., Hikichi, Y., Nishioka, J., Hasegawa, T.: IEEE Trans. Appl. Supercond. 18, 516 (2008).
[3]. Miao, H., Meinesz, M., Czabai, B., Parrell, J., Hong, S.: AIP Conf. Proc. 986, 423 (2008).
[4]. Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: Jpn. J. Appl. Phys. 27, L209 (1988).
[5]. Mousavi Ghahfarokhi, S.E., Zargar Shoushtari, M.: Physica B 405, 4643 (2010).
[6]. P. Majewski, J. Mater. Res. 15 (2000) 854.
[7]. Biju, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, J. Alloy Compd. 433 (2007) 68–72.
[8]. X.Y. Lu, K. Watanabe, D. Yi, H. Chen, A. Nagata, C. Physica, Supercond. Appl. 471 (2011) 1090.
[9]. C. Terzioglu, H. Aydin, O. Ozturk, E. Bekiroglu, I. Belenli, Phys. B: Cond. Mater. 403 (2008) 3354–3359.
[10]. T.S. Chin, T.W. Huang, W.T. Lin, N.C. Wa, Y.H. Chou, T.C. Wu, P.T. Wu, H.H. Yen, Symp. Proc. Mater. Res. Soc., 1988, p. 261.
[11]. L. Ciontea, V. Boffa, T. Petrisor, R. Bruzzese, E. Perte, C. Alvani, Phys. C: Supercond. Appl. 257 (1996) 304.
[12]. Y.W. Hsueh, S.C. Chang, R.S. Liu, L. Woodall, M. Gerards, Mater. Res. Bull. 36 (2001) 1653.
[13]. P.E. Kazin, Yu D. Tretvakov, Russian Chem. Rev. 72 (2003) 849.
[14]. Sedky, J. Phys. Chem. Sol. 70 (2009) 9.
[15]. W. Zhu, C.K. Kuo, P.S. Nicholson, J. Am. Ceram. Soc. 80 (8) (1997) 1975.
[16]. J.C. Grivel, F. Kubel, R. Flukiger, J. Therm. Anal. 48 (1997) 665–674.
[17]. B.A. Marinkovic, P.M. Jardim, F. Rizzo, L. Mancic, O. Milosevic, Materials Chemistry and Physics 94 (2005) 233–240.
[18]. H.K. Liu, S.X. Dou, M. Ionescu, Z.B. Shao, K.R. Liu, L.Q. Liu, J. Mater. Res. 10 (11) (1995) 2933–2937.
[19]. Chong, M. Hiroi, J. Izumi, Y. Shimoyama, Y. Nakayama, K. Kishio, T. Terashima, Y. Bando, M. Takano, Science 276 (1997) 770–773.
[20]. T. Motohashi, Y. Nakayama, T. Fujita, K. Kitazawa, J. Shimoyama, K. Kishio, Phys. Rev. B 59 (1999) 14080–14086.
[21]. W.D.Wu, A. Keren, L.P. Le, B.J. Sternlieb, G.M. Luke, Y.J. Uemura, Phys. Rev. B 47 (1993) 8172–8186.
[22]. Crossley, A.D. Caplin, A.V. Berenov, J.L. MacManus, Supercond. Sci. Technol. 13 (2000) 551–557.
[23]. C.W. Chiu, R.L. Meng, L. Gao, Z.J. Huang, F. Chen, Y.Y. Xue, Nature 365, 323 (1993).
[24]. S.A. Halim, S.A. Khawaldeh, S.B. Mohammed, H. Azhan, Mater. Chem. Phys. 61, 251 (1999).
Influences of Cerium Addition on the Structural and Superconducting Properties with Pb and Pb-free Bi2Sr2Ca2Cu3Oδ System
Year 2017 ,
Volume: 38 Issue: 3, 492 - 501, 30.09.2017
Hasan Ağıl
Abstract
In
this study, the thermal, structural and superconducting properties with lead
and lead-free cerium added Bi2 Sr2 Ca2 Cu3 Oδ
superconducting system have been investigated. Cerium-added superconductors
with the general stoichiometry of Bi2-x Pbx Sr2 Ca2 Cu3 Cey Oδ
(x = 0 and 0.4 and y = 0, 0.1, 0.2 and 0.4) were prepared by the conventional
solid state synthesis technique. The materials are characterized by DTA/TGA,
XRD, SEM, EDX and R-T measurements. Although the desired phase is the Bi-2223
phase in the manufactured materials, it is observed that Bi-2212 phase
predominates in some materials. Especially while being the Bi-2212 phase in
Pb-free samples, the main phase is relatively Bi-2223 phase in Pb containing
samples. Consequently, critical temperature values have also decreased and
transition behavior has been observed in two steps.
References
[1]. Runde, M.: IEEE Trans. Appl. Supercond. 5, 813 (1995).
[2]. Godeke, A., Cheng, D., Dietderich, D.R., English, C.D., Felice, H., Hannaford, C.R., Prestemon, S.O., Sabbi, G., Scanlan, R.M., Hikichi, Y., Nishioka, J., Hasegawa, T.: IEEE Trans. Appl. Supercond. 18, 516 (2008).
[3]. Miao, H., Meinesz, M., Czabai, B., Parrell, J., Hong, S.: AIP Conf. Proc. 986, 423 (2008).
[4]. Maeda, H., Tanaka, Y., Fukutomi, M., Asano, T.: Jpn. J. Appl. Phys. 27, L209 (1988).
[5]. Mousavi Ghahfarokhi, S.E., Zargar Shoushtari, M.: Physica B 405, 4643 (2010).
[6]. P. Majewski, J. Mater. Res. 15 (2000) 854.
[7]. Biju, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, J. Alloy Compd. 433 (2007) 68–72.
[8]. X.Y. Lu, K. Watanabe, D. Yi, H. Chen, A. Nagata, C. Physica, Supercond. Appl. 471 (2011) 1090.
[9]. C. Terzioglu, H. Aydin, O. Ozturk, E. Bekiroglu, I. Belenli, Phys. B: Cond. Mater. 403 (2008) 3354–3359.
[10]. T.S. Chin, T.W. Huang, W.T. Lin, N.C. Wa, Y.H. Chou, T.C. Wu, P.T. Wu, H.H. Yen, Symp. Proc. Mater. Res. Soc., 1988, p. 261.
[11]. L. Ciontea, V. Boffa, T. Petrisor, R. Bruzzese, E. Perte, C. Alvani, Phys. C: Supercond. Appl. 257 (1996) 304.
[12]. Y.W. Hsueh, S.C. Chang, R.S. Liu, L. Woodall, M. Gerards, Mater. Res. Bull. 36 (2001) 1653.
[13]. P.E. Kazin, Yu D. Tretvakov, Russian Chem. Rev. 72 (2003) 849.
[14]. Sedky, J. Phys. Chem. Sol. 70 (2009) 9.
[15]. W. Zhu, C.K. Kuo, P.S. Nicholson, J. Am. Ceram. Soc. 80 (8) (1997) 1975.
[16]. J.C. Grivel, F. Kubel, R. Flukiger, J. Therm. Anal. 48 (1997) 665–674.
[17]. B.A. Marinkovic, P.M. Jardim, F. Rizzo, L. Mancic, O. Milosevic, Materials Chemistry and Physics 94 (2005) 233–240.
[18]. H.K. Liu, S.X. Dou, M. Ionescu, Z.B. Shao, K.R. Liu, L.Q. Liu, J. Mater. Res. 10 (11) (1995) 2933–2937.
[19]. Chong, M. Hiroi, J. Izumi, Y. Shimoyama, Y. Nakayama, K. Kishio, T. Terashima, Y. Bando, M. Takano, Science 276 (1997) 770–773.
[20]. T. Motohashi, Y. Nakayama, T. Fujita, K. Kitazawa, J. Shimoyama, K. Kishio, Phys. Rev. B 59 (1999) 14080–14086.
[21]. W.D.Wu, A. Keren, L.P. Le, B.J. Sternlieb, G.M. Luke, Y.J. Uemura, Phys. Rev. B 47 (1993) 8172–8186.
[22]. Crossley, A.D. Caplin, A.V. Berenov, J.L. MacManus, Supercond. Sci. Technol. 13 (2000) 551–557.
[23]. C.W. Chiu, R.L. Meng, L. Gao, Z.J. Huang, F. Chen, Y.Y. Xue, Nature 365, 323 (1993).
[24]. S.A. Halim, S.A. Khawaldeh, S.B. Mohammed, H. Azhan, Mater. Chem. Phys. 61, 251 (1999).
Show All References
Show Less References
There are 24 citations in total.
Details
Journal Section
Articles
Authors
Hasan Ağıl
Türkiye
Publication Date
September 30, 2017
Submission Date
May 16, 2017
Acceptance Date
August 7, 2017
Published in Issue
Year 2017Volume: 38 Issue: 3
Cite
APA
Ağıl, H. (2017). Influences of Cerium Addition on the Structural and Superconducting Properties with Pb and Pb-free Bi2Sr2Ca2Cu3Oδ System. Cumhuriyet Science Journal, 38(3), 492-501. https://doi.org/10.17776/csj.340877