Derleme
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 2, 289 - 305, 30.09.2020
https://doi.org/10.46373/hafebid.782639

Öz

Kaynakça

  • [1] Van Den Doel, K., Kry, P. G., & Pai, D. K., (2001),” FOLEYAUTOMATIC: Physically-based Sound Effects for Interactive Simulation and Animation In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 537-544).
  • [2] Pai, D. K., Doel, K. V. D., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., & Yau, S. H., (2001),” Scanning Physical Interaction Behavior of 3D Objects”, In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 87-96).
  • [3] O'Brien, J. F., Cook, P. R., & Essl, G., (2001),” Synthesizing Sounds from Physically Based Motion”, Synthesizing sounds from physically based motion. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 529-536).
  • [4] Rath, M., Rocchesso, D., & Avanzini, F., (2002),” Physically–based real-time modeling of contact sounds”, In Proc. Int. Computer Music Conf.).
  • [5] Cook, P. R., (2002),” Sound Production and Modeling”, Sound production and modeling. IEEE Computer Graphics and applications, 22(4), 23-27.
  • [6] Bank, B., Avanzini, F., Borin, G., De Poli, G., Fontana, F., & Rocchesso, D., (2003),” Physically Informed Signal Processing Methods for Piano Sound Synthesis: A Research Overview”, Physically informed signal processing methods for piano sound synthesis: a research overview. EURASIP Journal on Advances in Signal Processing, 2003(10), 464536.
  • [7] Zhang, Q., Ye, L., & Pan, Z., (2005),” Physically-based Sound Synthesis on GPUs”, In International Conference on Entertainment Computing (pp. 328-333). Springer, Berlin, Heidelberg.
  • [8] Raghuvanshi, N., & Lin, M. C., (2006),” Interactive Sound Synthesis for Large Scale Environments”, In Proceedings of the 2006 symposium on Interactive 3D graphics and games (pp. 101-108).
  • [9] Barbic, D. L. J. J., & Pai, D. K., (2006), “Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources”, Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources.
  • [10] Raghuvanshi, N., & Lin, M. C., (2007),” Physically Based Sound Synthesis for Large-Scale Virtual Environments”, IEEE Computer Graphics and Applications, 27(1), 14-18.
  • [11] Peltola, L., Erkut, C., Cook, P. R., & Valimaki, V., (2007), “Synthesis of Hand Clapping Sounds”, IEEE Transactions on Audio, Speech, and Language Processing, 15(3), 1021-1029.
  • [12] Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., & Grinspun, E., (2008),” Discrete Elastic Rods”, In ACM SIGGRAPH 2008 papers (pp. 1-12).
  • [13] Chadwick, J. N., An, S. S., & James, D. L., (2009), “Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells”, ACM Trans. Graph., 28(5), 119.
  • [14] Zheng, C., & James, D. L., (2009),” Harmonic Fluids”, ACM Transactions on Graphics (TOG), 28(3), 1-12.
  • [15] Chadwick, J. N., & James, D. L., (2011),” Animating Fire with Sound”, ACM Transactions on Graphics (TOG), 30(4), 1-8.
  • [16] Chadwick, J. N., Zheng, C., & James, D. L., (2012), “Precomputed Acceleration Noise for Improved Rigid-Body Sound”, ACM Transactions on Graphics (TOG), 31(4), 1-9.
  • [17] An, S. S., James, D. L., & Marschner, S., (2012), “Motion-driven Concatenative Synthesis of Cloth Sounds” ACM Transactions on Graphics (TOG), 31(4), 1-10.
  • [18] Bilbao, S., Hamilton, B., Torin, A., Webb, C., Graham, P., Gray, A., ... & Perry, J., (2013), “Large Scale Physical Modeling Sound Synthesis”, In Proceedings of the Stockholm music acoustic conference (SMAC2013), Stockholm (pp. 593-600).
  • [19] Ren, Z., Yeh, H., & Lin, M. C., (2013), “Example-Guided Physically Based Modal Sound Synthesis”, ACM Transactions on Graphics (TOG), 32(1), 1-16.
  • [20] Langlois, T. R., & James, D. L., (2014), “Inverse-Foley Animation: Synchronizing rigid-body motions to sound”, ACM Transactions on Graphics (TOG), 33(4), 1-11.
  • [21] Rungta, A., Schissler, C., Mehra, R., Malloy, C., Lin, M., & Manocha, D., (2016), “SynCoPation: Interactive Synthesis-Coupled Sound Propagation”, IEEE transactions on visualization and computer graphics, 22(4), 1346-1355.
  • [22] Schweickart, E., James, D. L., & Marschner, S., (2017), “Animating Elastic Rods with Sound”, ACM Transactions on Graphics (TOG), 36(4), 1-10.
  • [23] Bank, B., & Chabassier, J., (2018), “Model-based digital pianos: from physics to sound synthesis”, IEEE Signal Processing Magazine, 36(1), 103-114.
  • [24] B. Bank and J. Chabassier, (2019), “Model-Based Digital Pianos From physics to sound synthesis”, IEEE Signal Processing Magazine, vol. 36, no. 1, pp. 103-114.
  • [25] Bilbao, S., Desvages, C., Ducceschi, M., Hamilton, B., Harrison-Harsley, R., Torin, A., & Webb, C., (2020), “Physical Modeling, Algorithms, and Sound Synthesis: The NESS Project”, The NESS Project. Computer Music Journal, 43(2-3), 15-30.
  • [26] Bilbao, S., (2009), Numerical Sound Synthesis, Singapur, John Wiley & Sons.
  • [27] Cook P., (2002), Real Sound Synthesis for Interactive Applications, New York, Routledge.
  • [28] https://(www.serdarkorkut.com).[09,05,2017, sonlu-elemanlar-metodu]
  • [29] Friedenthal, S., Moore, A., Steiner, R., (2015), A Practical Guide to SysML The Systems Modeling Language, United States of America, Morgan Kaufmann.

Fizik Tabanlı Ses Sentezi Uygulamaları Üzerine Bir İnceleme

Yıl 2020, Cilt: 3 Sayı: 2, 289 - 305, 30.09.2020
https://doi.org/10.46373/hafebid.782639

Öz

Bu çalışmada 1993-2020 yılları arasında yayınlanmış, fizik tabanlı ses simülasyonu konusunda yapılmış araştırmaları içeren 29 adet makale taranmıştır. Makalelerde kullanılan fiziksel modeller ve çalışmaların kısa özeti bir tablo ile burada verilmiştir. Bu çalışmalar karşılaştırılmalı olarak incelendiğinde 14 makalede Modal Sentezleme yönteminin, 7 adet makalede ise Geometrik Model yönteminin tercih edildiği görülmüştür.
Bilgisayarların hesaplama güçlerinin artması ile cisimlerin interaktif görüntü ve ses simülasyonlarının üretimi günümüzde daha verimli hale gelmiştir. Simülasyonların fiziksel modele dönüştürülmesi, elde edilecek görüntü ve sesin daha gerçekçi olmasını sağlamaktadır. Ancak, grafik simülasyonlarına kıyasla, gerçekçi seslerin simüle edilmesi son derece yüksek hesaplama maliyeti gerektirmesi nedeniyle hala araştırılmakta olan güncel bir konudur. Bu araştırmada özellikle fizik tabanlı ses simülasyonu yapılmış çalışmalar taranarak, hangi yöntemlerin kullanıldığı özetlenmiştir.

Kaynakça

  • [1] Van Den Doel, K., Kry, P. G., & Pai, D. K., (2001),” FOLEYAUTOMATIC: Physically-based Sound Effects for Interactive Simulation and Animation In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 537-544).
  • [2] Pai, D. K., Doel, K. V. D., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., & Yau, S. H., (2001),” Scanning Physical Interaction Behavior of 3D Objects”, In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 87-96).
  • [3] O'Brien, J. F., Cook, P. R., & Essl, G., (2001),” Synthesizing Sounds from Physically Based Motion”, Synthesizing sounds from physically based motion. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 529-536).
  • [4] Rath, M., Rocchesso, D., & Avanzini, F., (2002),” Physically–based real-time modeling of contact sounds”, In Proc. Int. Computer Music Conf.).
  • [5] Cook, P. R., (2002),” Sound Production and Modeling”, Sound production and modeling. IEEE Computer Graphics and applications, 22(4), 23-27.
  • [6] Bank, B., Avanzini, F., Borin, G., De Poli, G., Fontana, F., & Rocchesso, D., (2003),” Physically Informed Signal Processing Methods for Piano Sound Synthesis: A Research Overview”, Physically informed signal processing methods for piano sound synthesis: a research overview. EURASIP Journal on Advances in Signal Processing, 2003(10), 464536.
  • [7] Zhang, Q., Ye, L., & Pan, Z., (2005),” Physically-based Sound Synthesis on GPUs”, In International Conference on Entertainment Computing (pp. 328-333). Springer, Berlin, Heidelberg.
  • [8] Raghuvanshi, N., & Lin, M. C., (2006),” Interactive Sound Synthesis for Large Scale Environments”, In Proceedings of the 2006 symposium on Interactive 3D graphics and games (pp. 101-108).
  • [9] Barbic, D. L. J. J., & Pai, D. K., (2006), “Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources”, Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources.
  • [10] Raghuvanshi, N., & Lin, M. C., (2007),” Physically Based Sound Synthesis for Large-Scale Virtual Environments”, IEEE Computer Graphics and Applications, 27(1), 14-18.
  • [11] Peltola, L., Erkut, C., Cook, P. R., & Valimaki, V., (2007), “Synthesis of Hand Clapping Sounds”, IEEE Transactions on Audio, Speech, and Language Processing, 15(3), 1021-1029.
  • [12] Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., & Grinspun, E., (2008),” Discrete Elastic Rods”, In ACM SIGGRAPH 2008 papers (pp. 1-12).
  • [13] Chadwick, J. N., An, S. S., & James, D. L., (2009), “Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells”, ACM Trans. Graph., 28(5), 119.
  • [14] Zheng, C., & James, D. L., (2009),” Harmonic Fluids”, ACM Transactions on Graphics (TOG), 28(3), 1-12.
  • [15] Chadwick, J. N., & James, D. L., (2011),” Animating Fire with Sound”, ACM Transactions on Graphics (TOG), 30(4), 1-8.
  • [16] Chadwick, J. N., Zheng, C., & James, D. L., (2012), “Precomputed Acceleration Noise for Improved Rigid-Body Sound”, ACM Transactions on Graphics (TOG), 31(4), 1-9.
  • [17] An, S. S., James, D. L., & Marschner, S., (2012), “Motion-driven Concatenative Synthesis of Cloth Sounds” ACM Transactions on Graphics (TOG), 31(4), 1-10.
  • [18] Bilbao, S., Hamilton, B., Torin, A., Webb, C., Graham, P., Gray, A., ... & Perry, J., (2013), “Large Scale Physical Modeling Sound Synthesis”, In Proceedings of the Stockholm music acoustic conference (SMAC2013), Stockholm (pp. 593-600).
  • [19] Ren, Z., Yeh, H., & Lin, M. C., (2013), “Example-Guided Physically Based Modal Sound Synthesis”, ACM Transactions on Graphics (TOG), 32(1), 1-16.
  • [20] Langlois, T. R., & James, D. L., (2014), “Inverse-Foley Animation: Synchronizing rigid-body motions to sound”, ACM Transactions on Graphics (TOG), 33(4), 1-11.
  • [21] Rungta, A., Schissler, C., Mehra, R., Malloy, C., Lin, M., & Manocha, D., (2016), “SynCoPation: Interactive Synthesis-Coupled Sound Propagation”, IEEE transactions on visualization and computer graphics, 22(4), 1346-1355.
  • [22] Schweickart, E., James, D. L., & Marschner, S., (2017), “Animating Elastic Rods with Sound”, ACM Transactions on Graphics (TOG), 36(4), 1-10.
  • [23] Bank, B., & Chabassier, J., (2018), “Model-based digital pianos: from physics to sound synthesis”, IEEE Signal Processing Magazine, 36(1), 103-114.
  • [24] B. Bank and J. Chabassier, (2019), “Model-Based Digital Pianos From physics to sound synthesis”, IEEE Signal Processing Magazine, vol. 36, no. 1, pp. 103-114.
  • [25] Bilbao, S., Desvages, C., Ducceschi, M., Hamilton, B., Harrison-Harsley, R., Torin, A., & Webb, C., (2020), “Physical Modeling, Algorithms, and Sound Synthesis: The NESS Project”, The NESS Project. Computer Music Journal, 43(2-3), 15-30.
  • [26] Bilbao, S., (2009), Numerical Sound Synthesis, Singapur, John Wiley & Sons.
  • [27] Cook P., (2002), Real Sound Synthesis for Interactive Applications, New York, Routledge.
  • [28] https://(www.serdarkorkut.com).[09,05,2017, sonlu-elemanlar-metodu]
  • [29] Friedenthal, S., Moore, A., Steiner, R., (2015), A Practical Guide to SysML The Systems Modeling Language, United States of America, Morgan Kaufmann.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Elif Ekşi

Fatma Nur Akı

Rıfat Yazıcı

Yayımlanma Tarihi 30 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA Ekşi, E., Akı, F. N., & Yazıcı, R. (2020). Fizik Tabanlı Ses Sentezi Uygulamaları Üzerine Bir İnceleme. Haliç Üniversitesi Fen Bilimleri Dergisi, 3(2), 289-305. https://doi.org/10.46373/hafebid.782639

T. C. Haliç Üniversitesi Fen Bilimleri Dergisi