Araştırma Makalesi
BibTex RIS Kaynak Göster

Antimicrobial and Antioxidant Activities of Different Spice Extracts

Yıl 2021, Sayı: 22, 421 - 429, 31.01.2021
https://doi.org/10.31590/ejosat.848958

Öz

Up to day, very little work has been done on the antimicrobial activity of spices extracts against food pathogens. Additionally, there is very little information about the antioxidant activities of spices. The aim of this work was to investigate the antimicrobial effects of spices extracts against food pathogens, and its non-enzymatic antioxidant potentials. The plants have been provided from C2 region of Mugla and local herbalists. Antimicrobial activities of plants were evaluated using disc diffusion method. The extracts showed maximum inhibition zone against various microorganisms, and the zone was 8 mm. Candida albicans and Listeria monocytogenes showed the lowest sensitivity to different extracts (3250 µg/ml). In addition, the extracts were tested against the DPPH [2,2-Diphenyl-1-picrylhydrazyl] free-radical for antioxidant activity. A lot of extracts were displayed a high antioxidant activity. The highest antioxidant activity was determined on Nigella sativa (84%). In this study determined that the spices extracts have antimicrobial and antioxidant properties.

Destekleyen Kurum

Muğla Sıtkı Koçman Üniversitesi

Proje Numarası

BAP-14/054

Teşekkür

This work was supported by Mugla Sitki Kocman University Scientific Research Project (BAP-14/054). The authors thank Mugla Sitki Kocman University.

Kaynakça

  • Abdel-Fattah, A. F. M., Matsumoto, K., & Watanabe, H. (2000). Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. European Journal of Pharmacology, 400(1), 89-97.
  • Abdel-Massih, R. M, Fares, R., Bazzi, S., El-Chami, N., & Baydoun, E. (2010). The apoptotic and antiproliferative activity of Origanum majorana extracts on human leukemic cell line. Leuk. Res., 34,1052-1056.
  • Acar, G., Dogan, N. M., Duru, M. E., & Kıvrak, I. (2010). Phenolic profiles, antimicrobial and antioxidant activity of the various extracts of Crocus species in Anatolia. African Journal of Microbiology Research, 4(11), 1154-1161.
  • Adzet, T., Vila, R., & Canigueral, S. (1988). Chromatographic analysis of polyphenols of some Iberian Thymus. Journal of Ethnopharmacology, 24(2-3), 147-154.
  • Akgül, A. (1993). Baharat bilimi ve teknolojisi. Gıda Teknolojisi Derneği Yayınları, 15, 111-113.
  • Andoğan, B. C., Baydar, H., Kaya, S., Demirci, M., Özbaşar, D., & Mumcu, E. (2002). Antimicrobial activity and chemical composition of some essential oils. Archives of Pharmacal Research, 25(6), 860-864.
  • Asgarpanah, J., Darabi-Mahboub, E., Mahboubi, A., Mehrab, R., & Hakemivala, M. (2013). In-vitro evaluation of Crocus sativus L. petals and stamens as natural antibacterial agents against food-borne bacterial strains. Iranian Journal of Pharmaceutical Sciences, 9(4), 69-82.
  • Badary, O. A. (1999). Thymoquinone attenuates ifosfamide-induced Fanconi syndrome in rats and enhances its antitumor activity in mice. Journal of Ethnopharmacology, 67(2), 135-142.
  • Badary, O. A., Abdel-Naim, A. B., Abdel-Wahab, M. H., & Hamada, F. M. (2000). The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology, 143(3), 219-226.
  • Bauer, A.W, Kirby W.M, Sherris J.C, & Turck M. (1966). Am. J. Clin. Path, 45,493.
  • Baytop, T. (1999). Türkiye'de bitkiler ile tedavi: geçmişte ve bugün. Nobel Tıp Kitabevleri.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323-328.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157-2184.
  • Chen, J. H. & Ho, C. T. (1997). Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem., 45, 2374-2378.
  • CLSI (Clinical and Laboratory Standards Institute). (2003). Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically; Approved Standard M7-A 6th edn. National Committee for Clinical Laboratory Standards, Wayne, Philadelphia.
  • CLSI (Clinical and Laboratory Standards Institute). (2006). Performance Standards for Antimicrobial Susceptibility Testing. 16th Informational Supplement M100-S16. National Committee for Clinical Laboratory Standards, Wayne, Philadelphia.
  • Darughe, F., Barzegar, M., & Sahari, M. A. (2012). Antioxidant and antifungal activity of Coriander (Coriandrum sativum L.) essential oil in cake. International Food Research Journal, 19(3), 1253-1260.
  • Davis, P. H., & Tan, K. (Eds.). (1988). Flora of Turkey and the Aegean islands. Edinburgh University Press.
  • De Vincenzi, M., Mancini, E., & Dessi, M. R. (1997). Monographs on botanical flavouring substances used in foods. Part VI. Fitoterapia (Milano), 68(1), 49-61.
  • Declume, C. (1989). Anti-inflammatory evaluation op a hydroalcoholic extract op black currant leaves (Ribes nigrum). Journal of Ethnopharmacology, 27(1-2), 91-98.
  • Dvaranauskaite, A., Venskutonis, P. R., Raynaud, C., Talou, T., Viškelis, P., & Dambrauskiene, E. (2008). Characterization of steam volatiles in the essential oil of black currant buds and the antioxidant properties of different bud extracts. Journal of Agricultural and Food Chemistry, 56(9), 3279-3286.
  • Dvaranauskaitė, A., Venskutonis, P. R., Raynaud, C., Talou, T., Viškelis, P., & Sasnauskas, A. (2009). Variations in the essential oil composition in buds of six blackcurrant (Ribes nigrum L.) cultivars at various development phases. Food Chemistry, 114(2), 671-679.
  • Escribano, J., Alonso, G. L., Coca-Prados, M., & Fernández, J. A. (1996). Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100(1-2), 23-30.
  • Ezzeddine, N.B, Abdelkafi, M.M, Ben, Aissa, R, & Chaabouni M. M. (2001). Antibacterial screening of (Origanum majorana L.), oil from Tunisia. Journal of Essential Oil Research, 13, 295-297.
  • Facciola S. (1998). Cornucopia II: a source book of edible plants. Vista: Kampong Publications (HSA Library).
  • Farag, R. S., Daw, Z. Y., Hewedi, F. M., & El-Baroty, G. S. A. (1989). Antimicrobial activity of some Egyptian spice essential oils. Journal of Food Protection, 52(9), 665-667.
  • Ferrara, L., Naviglio, D., & Gallo, M. (2014). Extraction of bioactive compounds of saffron (Crocus sativus L.) by ultrasound assisted extraction (UAE) and by rapid solid-liquid dynamic extraction (RSLDE). European Scientific Journal, 10(3),1-13.
  • Fogden, E., & Neuberger, J. (2003). Alternative medicines and the liver. Liver İnternational, 23(4), 213-220.
  • Garbacki, N., Kinet, M., Nusgens, B., Desmecht, D., & Damas, J. (2005). Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1. Journal of Inflammation, 2(1), 1-12.
  • Gürsoy, O.V, Gürsoy, U.K. (2004). Anadolu’da diş ve dişeti ile ilgili hastalıkların tedavisinde halk arasında yaygın olarak kullanılan bitkiler, kullanım şekilleri ve bitkisel özellikleri. Cumhuriyet Üniversitesi Diş Hekimliği Fakültesi Dergisi, Sivas, 7(1), 64-67.
  • Halawani, E. (2009). Antibacterial activity of thymoquinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics, Advances in Biological Research, 3(5-6), 148-152.
  • Hosseinzadeh, H., Khosravan V. (2002a). Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice, Archieve of Iranian Medicine, 5, 44–47.
  • Hosseinzadeh, H., Karimi G.H, Niapoor M. (2004). Antidepressant effects of Crocus sativus stigma extracts and its constituents, crocin and safranal, in mice, Acta Horticulturae (ISHS), 650, 435–445.
  • Hosseinzadeh, H., Younesi H.M. 2002b. Antinociceptive and antiinflammatory effects of Crocus sativus L. stigma and petal extracts in mice, BMC Pharmacology, 2, 1–8.
  • Indu, M.N., Hatha A.A.M., Abirosh C., Harsha U., Vivekanandan, G. (2006). Antimicrobial activity of some of the South-Indian spices against serotypesof Escherichia coli, Salmonella, Listeria monocytogenes and Aeromonas hydrophila. Brazilian Journal of Microbiology, 37:153-158. ISSN 1517-8382153.
  • İşcan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M., Başer, H. C., & Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural and Food Chemistry, 50(14), 3943-3946.
  • Jastaniah, S. D. (2014). The antimicrobial activity of some plant extracts, commonly used by Saudi people, against multidrug resistant bacteria. Life Sci J, 11(8), 78-84.
  • Kanter, M., Demir, H., Karakaya, C., & Ozbek, H. (2005). Gastroprotective activity of Nigella sativa L oil and its constituent, thymoquinone against acute alcohol-induced gastric mucosal injury in rats. World Journal of Gastroenterology: WJG, 11(42), 6662.
  • Kaseb, A. O., Chinnakannu, K., Chen, D., Sivanandam, A., Tejwani, S., Menon, M., Dou, Q. P. & Reddy, G. P. V. (2007). Androgen receptor–and E2F-1–targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Research, 67(16), 7782-7788.
  • Khalid, A., Rehman, U. U., Sethi, A., Khilji, S., Fatima, U., Khan, M. I., Waqas M.K., Saqib Q.N., Asad M. H. H. B, Farzana K., Mahmood, S., Waseem A., Ismail T., and Murtaza G. (2011). Antimicrobial activity analysis of extracts of Acacia modesta, Artimisia absinthium, Nigella sativa and Saussurea lappa against Gram positive and Gram negative microorganisms. African Journal of Biotechnology, 10(22), 4574-4580.
  • Kiran, S. R., Devi, P. S., & Reddy, K. J. (2008). Evaluation of in vitro antimicrobial activity of leaf and stem essential oils of Chloroxylon swietenia DC. World Journal of Microbiology and Biotechnology, 24(9), 1909-1914.
  • Koidis, P., Grigoriadis, S., & Batzios, C. (1996). Behaviour of Campylobacter jejuni in broth stored at 4°C, with different concentration of spices (garlic, onion, black pepper, oregano). Archiv für Lebensmittelhygiene, 47(4), 93-95.
  • Kulisic, T., Radonic, A., & Milos, M. (2005). Antioxidant properties of thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) essential oils. Italian Journal of Food Science, 17(3), 315.
  • Leung, A. Y. (1980). Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. Wiley.
  • Maggi, L., Carmona, M., Del Campo, C. P., Kanakis, C. D., Anastasaki, E., Tarantilis, P. A., Polissiou, M G., Alonso, G. L. (2009). Worldwide market screening of saffron volatile composition. Journal of the Science of Food and Agriculture, 89(11), 1950-1954.
  • Martinez-Tome, M., Jimenez, A. M., Ruggieri, S., Frega, N., Strabbioli, R., & Murcia, M. A. (2001). Antioxidant properties of Mediterranean spices compared with common food additives. Journal of Food Protection, 64(9), 1412-1419.
  • Mata, A. T., Proença, C., Ferreira, A. R., Serralheiro, M. L. M., Nogueira, J. M. F., & Araújo, M. E. M. (2007). Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chemistry, 103(3), 778-786.
  • Matasyoh, J. C., Maiyo, Z. C., Ngure, R. M., & Chepkorir, R. (2009). Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry, 113(2), 526-529.
  • Mimica-Dukić, N., Božin, B., Soković, M., Mihajlović, B., & Matavulj, M. (2003). Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Medica, 69(05), 413-419.
  • Nascimento, G. G., Locatelli, J., Freitas, P. C., & Silva, G. L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology, 31(4), 247-256.
  • Nikolić, M., Glamočlija, J., Ferreira, I. C., Calhelha, R. C., Fernandes, Â., Marković, T., Marković, D., Giweli, A. & Soković, M. (2014). Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Industrial Crops and Products, 52, 183-190.
  • Novak, J., Bitsch, C., Pank, F., Langbehn, J., & Franz, C. M. (2002). Distribution of the cis-sabinene hydrate acetate-chemotype in accessions of marjoram (Origanum majorana L.). Euphytica, 127(1), 69-74.
  • Okmen, G., Kardas, S., Bayrak, B., Arslan, A., & Cakar, H. (2016). The antibacterial activities of Crocus sativus against mastitis pathogens and its antioxidant activities. WJPPS, 5(3), 146-156.
  • Oprea, E., Rădulescu, V., Balotescu, C., Lazar, V., Bucur, M., Mladin, P., & Farcasanu, I. C. (2008). Chemical and biological studies of Ribes nigrum L. buds essential oil. Biofactors, 34(1), 3-12.
  • Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science, 73(2), 236-244.
  • Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157: H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18(5), 414-420.
  • Özcan, M., & Chalchat, J. C. (2002). Essential oil composition of Ocimum basilicum L. Czech J. Food Sci, 20(6), 223-8.
  • Palombo, E. A. (2009). Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. Evidence Based Complementary and AlternativeMedicine, 2011, 100.
  • Pamuk, A. (2008). Şifalı Bitkiler Ansiklopedisi. Pamuk Yayıncılık.
  • Peschel, W., Sánchez-Rabaneda, F., Diekmann, W., Plescher, A., Gartzía, I., Jiménez, D., Raventós, R. L., Buxaderas, S. & Codina, C. (2006). An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chemistry, 97(1), 137-150.
  • Picton, M. (2000). The book of magical herbs: herbal history, mystery, & folklore. London: Barron's.
  • Raina, B. L., Agarwal, S. G., Bhatia, A. K., & Gaur, G. S. (1996). Changes in Pigments and Volatiles of Saffron (Crocus sativus L) During Processing and Storage. Journal of the Science of Food and Agriculture, 71(1), 27-32.
  • Ramadan, A., Soliman, G., Mahmoud, S. S., Nofal, S. M., & Abdel-Rahman, R. F. (2012). Evaluation of the safety and antioxidant activities of Crocus sativus and Propolis ethanolic extracts. Journal of Saudi Chemical Society, 16(1), 13-21.
  • Rauha, J. P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Pihlaja, K., Vuorela, H., Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56(1), 3-12.
  • Rios, J. L., Recio, M. C., Giner, R. M., & Manez, S. (1996). An update review of saffron and its active constituents. Phytotherapy Research, 10(3), 189-193.
  • Robak, J., & Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology, 37(5), 837-841.
  • Sağdıç, O., Kuşçu, A., Özcan, M., & Özçelik, S. (2002). Effects of Turkish spice extracts at various concentrations on the growth of Escherichia coli O157: H7. Food Microbiology, 19(5), 473-480.
  • Smith-Palmer, A., Stewart, J., & Fyfe, L. (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiology, 18(4), 463-470.
  • Sokmen, A., Gulluce M., Akpulat H.A, Daferera D., Tepe B., Polissiou M., Sokmen M., Sahin F. (2004). The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius, Food Control, 15, 627–634.
  • Soureshjan, E. H., & Heidari, M. (2014). In vitro variation in antibacterial activity plant extracts on Glaucium elegans and saffron (Crocus sativus). Bangladesh Journal of Pharmacology, 9(3), 275-278.
  • Srivastava, J. P., Lambert, J., & Vietmeyer, N. (1996). Medicinal plants: An expanding role in development. The World Bank.
  • Stefanakis, M. K., Anastasopoulos, E., Katerinopoulos, H. E., & Makridis, P. (2014). Use of essential oils extracted from three Origanum species for disinfection of cultured rotifers (B rachionus plicatilis). Aquaculture Research, 45(11), 1861-1866.
  • Stević, T., Šavikin, K., Ristić, M., Zdunić, G., Janković, T., Krivokuća-Đokić, D., & Vulić, T. (2010). Composition and antimicrobial activity of the essential oil of the leaves of black currant (Ribes nigrum L.) cultivar Čačanska crna. Journal of the Serbian Chemical Society, 75(1), 35-43.
  • Tabart, J., Kevers, C., Evers, D., & Dommes, J. (2011). Ascorbic acid, phenolic acid, flavonoid, and carotenoid profiles of selected extracts from Ribes nigrum. Journal of Agricultural and Food Chemistry, 59(9), 4763-4770.
  • Tabart, J., Kevers, C., Pincemail, J., Defraigne, J. O., & Dommes, J. (2006). Antioxidant capacity of black currant varies with organ, season, and cultivar. Journal of Agricultural and Food Chemistry, 54(17), 6271-6276.
  • Tabart, J., Kevers, C., Sipel, A., Pincemail, J., Defraigne, J. O., & Dommes, J. (2007). Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chemistry, 105(3), 1268-1275.
  • Tepe, B., Daferera, D., Sökmen, M., Polissiou, M., & Sökmen, A. (2004). In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eigii M. Zohary et PH Davis. Journal of Agricultural and Food Chemistry, 52(5), 1132-1137.
  • Ting, W. E., & Deibel, K. E. (1991). Sensitivity of Listeria monocytogenes to spices at two temperatures. Journal of Food Safety, 12(2), 129-137.
  • Üner, Y., Aksu, H., & Ergün, Ö. (2000). Baharatın çeşitli mikroorganizmalar üzerine etkileri. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 26(1), 1-10.
  • Vagiri, M. R. (2012). Black currant (Ribes nigrum L.)-an insight into the crop. Introductory Paper at the Faculty of Landscape Planning, Horticulture and Agricultural Science (No. 2012: 2). Swedish University of Agricultural Sciences. pp1-58. ISSN 1654-3580.
  • Verma, S. K., & Bordia, A. (1998). Antioxidant property of saffron in man. Indian Journal of Medical Sciences, 52(5), 205-207.
  • Wanner, M. J., Koomen, G. J., & Dung, N. X. (1993). Thymoquinone from Eupatorium ayapana. Planta Medica, 59(01), 99-99.
  • WHO (World Health Organization). (2005). Food safety. WORLD Health Organization. Available From: www.who.int/mediacentre/factsheets/fs237/en/ [Accessed 28 November 2020].
  • WHO, 2008. Exposure assessment of microbiological hazards in food. World Health Organization. Available from: www. who.int/foodsafety/publications/micro/en/report.pdf [Accessed 28 November 2020].
  • Winterhalter, P., & Straubinger, M. (2000). Saffron—renewed interest in an ancient spice. Food Reviews International, 16(1), 39-59.
  • Wong, P. Y., & Kitts, D. D. (2006). Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chemistry, 97(3), 505-515.
  • Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165-5170.

Farklı Baharat Özütlerinin Antimikrobiyal ve Antioksidan Aktivitelerinin Saptanması

Yıl 2021, Sayı: 22, 421 - 429, 31.01.2021
https://doi.org/10.31590/ejosat.848958

Öz

Günümüze kadar, gıda patojenlerine karşı baharat özütlerinin antimikrobiyel aktivitesi üzerine çok az çalışma yapılmıştır. İlaveten, baharatların antioksidan aktiviteleri hakkında çok az bilgi vardır. Bu çalışmanın amacı, gıda patojenlerine karşı baharat özütlerinin antimikrobiyel etkilerini ve bunların enzimatik olmayan antioksidan potensiyellerini araştırmaktır. Bitkiler, Muğla' nın C2 bölgesinden ve yerel aktarlardan sağlanmıştır. Bitkilerin antimikrobiyel aktiviteleri disk difüzyon metodu kullanılarak ölçülmüştür. Buna ek olarak, özütler antioksidan aktivite için 2,2-Difenil-1-pikrilhidrazil (DPPH•) serbest radikaline karşı test edilmiştir. Özütler, çeşitli mikroorganizmalara karşı maksimum inhibisyon zonu göstermiştir ve bu zon 8 mm’dir. Candida albicans ve Listeria monocytogenes, farklı bitki özütlerine en düşük duyarlılığı göstermiştir (3250 µg/ml). Özütlerin birçoğu yüksek antioksidan aktivite sergilemiştir. En yüksek antioksidan aktivite Nigella sativa' da saptanmıştır (%84). Bu çalışmada, baharat özütlerinin antimikrobiyal ve antioksidan özelliklere sahip olduğu saptanmıştır. 

Proje Numarası

BAP-14/054

Kaynakça

  • Abdel-Fattah, A. F. M., Matsumoto, K., & Watanabe, H. (2000). Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. European Journal of Pharmacology, 400(1), 89-97.
  • Abdel-Massih, R. M, Fares, R., Bazzi, S., El-Chami, N., & Baydoun, E. (2010). The apoptotic and antiproliferative activity of Origanum majorana extracts on human leukemic cell line. Leuk. Res., 34,1052-1056.
  • Acar, G., Dogan, N. M., Duru, M. E., & Kıvrak, I. (2010). Phenolic profiles, antimicrobial and antioxidant activity of the various extracts of Crocus species in Anatolia. African Journal of Microbiology Research, 4(11), 1154-1161.
  • Adzet, T., Vila, R., & Canigueral, S. (1988). Chromatographic analysis of polyphenols of some Iberian Thymus. Journal of Ethnopharmacology, 24(2-3), 147-154.
  • Akgül, A. (1993). Baharat bilimi ve teknolojisi. Gıda Teknolojisi Derneği Yayınları, 15, 111-113.
  • Andoğan, B. C., Baydar, H., Kaya, S., Demirci, M., Özbaşar, D., & Mumcu, E. (2002). Antimicrobial activity and chemical composition of some essential oils. Archives of Pharmacal Research, 25(6), 860-864.
  • Asgarpanah, J., Darabi-Mahboub, E., Mahboubi, A., Mehrab, R., & Hakemivala, M. (2013). In-vitro evaluation of Crocus sativus L. petals and stamens as natural antibacterial agents against food-borne bacterial strains. Iranian Journal of Pharmaceutical Sciences, 9(4), 69-82.
  • Badary, O. A. (1999). Thymoquinone attenuates ifosfamide-induced Fanconi syndrome in rats and enhances its antitumor activity in mice. Journal of Ethnopharmacology, 67(2), 135-142.
  • Badary, O. A., Abdel-Naim, A. B., Abdel-Wahab, M. H., & Hamada, F. M. (2000). The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology, 143(3), 219-226.
  • Bauer, A.W, Kirby W.M, Sherris J.C, & Turck M. (1966). Am. J. Clin. Path, 45,493.
  • Baytop, T. (1999). Türkiye'de bitkiler ile tedavi: geçmişte ve bugün. Nobel Tıp Kitabevleri.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • Burits, M., & Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research, 14(5), 323-328.
  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157-2184.
  • Chen, J. H. & Ho, C. T. (1997). Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem., 45, 2374-2378.
  • CLSI (Clinical and Laboratory Standards Institute). (2003). Methods for Dilution Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically; Approved Standard M7-A 6th edn. National Committee for Clinical Laboratory Standards, Wayne, Philadelphia.
  • CLSI (Clinical and Laboratory Standards Institute). (2006). Performance Standards for Antimicrobial Susceptibility Testing. 16th Informational Supplement M100-S16. National Committee for Clinical Laboratory Standards, Wayne, Philadelphia.
  • Darughe, F., Barzegar, M., & Sahari, M. A. (2012). Antioxidant and antifungal activity of Coriander (Coriandrum sativum L.) essential oil in cake. International Food Research Journal, 19(3), 1253-1260.
  • Davis, P. H., & Tan, K. (Eds.). (1988). Flora of Turkey and the Aegean islands. Edinburgh University Press.
  • De Vincenzi, M., Mancini, E., & Dessi, M. R. (1997). Monographs on botanical flavouring substances used in foods. Part VI. Fitoterapia (Milano), 68(1), 49-61.
  • Declume, C. (1989). Anti-inflammatory evaluation op a hydroalcoholic extract op black currant leaves (Ribes nigrum). Journal of Ethnopharmacology, 27(1-2), 91-98.
  • Dvaranauskaite, A., Venskutonis, P. R., Raynaud, C., Talou, T., Viškelis, P., & Dambrauskiene, E. (2008). Characterization of steam volatiles in the essential oil of black currant buds and the antioxidant properties of different bud extracts. Journal of Agricultural and Food Chemistry, 56(9), 3279-3286.
  • Dvaranauskaitė, A., Venskutonis, P. R., Raynaud, C., Talou, T., Viškelis, P., & Sasnauskas, A. (2009). Variations in the essential oil composition in buds of six blackcurrant (Ribes nigrum L.) cultivars at various development phases. Food Chemistry, 114(2), 671-679.
  • Escribano, J., Alonso, G. L., Coca-Prados, M., & Fernández, J. A. (1996). Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100(1-2), 23-30.
  • Ezzeddine, N.B, Abdelkafi, M.M, Ben, Aissa, R, & Chaabouni M. M. (2001). Antibacterial screening of (Origanum majorana L.), oil from Tunisia. Journal of Essential Oil Research, 13, 295-297.
  • Facciola S. (1998). Cornucopia II: a source book of edible plants. Vista: Kampong Publications (HSA Library).
  • Farag, R. S., Daw, Z. Y., Hewedi, F. M., & El-Baroty, G. S. A. (1989). Antimicrobial activity of some Egyptian spice essential oils. Journal of Food Protection, 52(9), 665-667.
  • Ferrara, L., Naviglio, D., & Gallo, M. (2014). Extraction of bioactive compounds of saffron (Crocus sativus L.) by ultrasound assisted extraction (UAE) and by rapid solid-liquid dynamic extraction (RSLDE). European Scientific Journal, 10(3),1-13.
  • Fogden, E., & Neuberger, J. (2003). Alternative medicines and the liver. Liver İnternational, 23(4), 213-220.
  • Garbacki, N., Kinet, M., Nusgens, B., Desmecht, D., & Damas, J. (2005). Proanthocyanidins, from Ribes nigrum leaves, reduce endothelial adhesion molecules ICAM-1 and VCAM-1. Journal of Inflammation, 2(1), 1-12.
  • Gürsoy, O.V, Gürsoy, U.K. (2004). Anadolu’da diş ve dişeti ile ilgili hastalıkların tedavisinde halk arasında yaygın olarak kullanılan bitkiler, kullanım şekilleri ve bitkisel özellikleri. Cumhuriyet Üniversitesi Diş Hekimliği Fakültesi Dergisi, Sivas, 7(1), 64-67.
  • Halawani, E. (2009). Antibacterial activity of thymoquinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics, Advances in Biological Research, 3(5-6), 148-152.
  • Hosseinzadeh, H., Khosravan V. (2002a). Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice, Archieve of Iranian Medicine, 5, 44–47.
  • Hosseinzadeh, H., Karimi G.H, Niapoor M. (2004). Antidepressant effects of Crocus sativus stigma extracts and its constituents, crocin and safranal, in mice, Acta Horticulturae (ISHS), 650, 435–445.
  • Hosseinzadeh, H., Younesi H.M. 2002b. Antinociceptive and antiinflammatory effects of Crocus sativus L. stigma and petal extracts in mice, BMC Pharmacology, 2, 1–8.
  • Indu, M.N., Hatha A.A.M., Abirosh C., Harsha U., Vivekanandan, G. (2006). Antimicrobial activity of some of the South-Indian spices against serotypesof Escherichia coli, Salmonella, Listeria monocytogenes and Aeromonas hydrophila. Brazilian Journal of Microbiology, 37:153-158. ISSN 1517-8382153.
  • İşcan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M., Başer, H. C., & Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural and Food Chemistry, 50(14), 3943-3946.
  • Jastaniah, S. D. (2014). The antimicrobial activity of some plant extracts, commonly used by Saudi people, against multidrug resistant bacteria. Life Sci J, 11(8), 78-84.
  • Kanter, M., Demir, H., Karakaya, C., & Ozbek, H. (2005). Gastroprotective activity of Nigella sativa L oil and its constituent, thymoquinone against acute alcohol-induced gastric mucosal injury in rats. World Journal of Gastroenterology: WJG, 11(42), 6662.
  • Kaseb, A. O., Chinnakannu, K., Chen, D., Sivanandam, A., Tejwani, S., Menon, M., Dou, Q. P. & Reddy, G. P. V. (2007). Androgen receptor–and E2F-1–targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Research, 67(16), 7782-7788.
  • Khalid, A., Rehman, U. U., Sethi, A., Khilji, S., Fatima, U., Khan, M. I., Waqas M.K., Saqib Q.N., Asad M. H. H. B, Farzana K., Mahmood, S., Waseem A., Ismail T., and Murtaza G. (2011). Antimicrobial activity analysis of extracts of Acacia modesta, Artimisia absinthium, Nigella sativa and Saussurea lappa against Gram positive and Gram negative microorganisms. African Journal of Biotechnology, 10(22), 4574-4580.
  • Kiran, S. R., Devi, P. S., & Reddy, K. J. (2008). Evaluation of in vitro antimicrobial activity of leaf and stem essential oils of Chloroxylon swietenia DC. World Journal of Microbiology and Biotechnology, 24(9), 1909-1914.
  • Koidis, P., Grigoriadis, S., & Batzios, C. (1996). Behaviour of Campylobacter jejuni in broth stored at 4°C, with different concentration of spices (garlic, onion, black pepper, oregano). Archiv für Lebensmittelhygiene, 47(4), 93-95.
  • Kulisic, T., Radonic, A., & Milos, M. (2005). Antioxidant properties of thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) essential oils. Italian Journal of Food Science, 17(3), 315.
  • Leung, A. Y. (1980). Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. Wiley.
  • Maggi, L., Carmona, M., Del Campo, C. P., Kanakis, C. D., Anastasaki, E., Tarantilis, P. A., Polissiou, M G., Alonso, G. L. (2009). Worldwide market screening of saffron volatile composition. Journal of the Science of Food and Agriculture, 89(11), 1950-1954.
  • Martinez-Tome, M., Jimenez, A. M., Ruggieri, S., Frega, N., Strabbioli, R., & Murcia, M. A. (2001). Antioxidant properties of Mediterranean spices compared with common food additives. Journal of Food Protection, 64(9), 1412-1419.
  • Mata, A. T., Proença, C., Ferreira, A. R., Serralheiro, M. L. M., Nogueira, J. M. F., & Araújo, M. E. M. (2007). Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chemistry, 103(3), 778-786.
  • Matasyoh, J. C., Maiyo, Z. C., Ngure, R. M., & Chepkorir, R. (2009). Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry, 113(2), 526-529.
  • Mimica-Dukić, N., Božin, B., Soković, M., Mihajlović, B., & Matavulj, M. (2003). Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Medica, 69(05), 413-419.
  • Nascimento, G. G., Locatelli, J., Freitas, P. C., & Silva, G. L. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology, 31(4), 247-256.
  • Nikolić, M., Glamočlija, J., Ferreira, I. C., Calhelha, R. C., Fernandes, Â., Marković, T., Marković, D., Giweli, A. & Soković, M. (2014). Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Industrial Crops and Products, 52, 183-190.
  • Novak, J., Bitsch, C., Pank, F., Langbehn, J., & Franz, C. M. (2002). Distribution of the cis-sabinene hydrate acetate-chemotype in accessions of marjoram (Origanum majorana L.). Euphytica, 127(1), 69-74.
  • Okmen, G., Kardas, S., Bayrak, B., Arslan, A., & Cakar, H. (2016). The antibacterial activities of Crocus sativus against mastitis pathogens and its antioxidant activities. WJPPS, 5(3), 146-156.
  • Oprea, E., Rădulescu, V., Balotescu, C., Lazar, V., Bucur, M., Mladin, P., & Farcasanu, I. C. (2008). Chemical and biological studies of Ribes nigrum L. buds essential oil. Biofactors, 34(1), 3-12.
  • Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2006). Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Science, 73(2), 236-244.
  • Oussalah, M., Caillet, S., Saucier, L., & Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157: H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18(5), 414-420.
  • Özcan, M., & Chalchat, J. C. (2002). Essential oil composition of Ocimum basilicum L. Czech J. Food Sci, 20(6), 223-8.
  • Palombo, E. A. (2009). Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. Evidence Based Complementary and AlternativeMedicine, 2011, 100.
  • Pamuk, A. (2008). Şifalı Bitkiler Ansiklopedisi. Pamuk Yayıncılık.
  • Peschel, W., Sánchez-Rabaneda, F., Diekmann, W., Plescher, A., Gartzía, I., Jiménez, D., Raventós, R. L., Buxaderas, S. & Codina, C. (2006). An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chemistry, 97(1), 137-150.
  • Picton, M. (2000). The book of magical herbs: herbal history, mystery, & folklore. London: Barron's.
  • Raina, B. L., Agarwal, S. G., Bhatia, A. K., & Gaur, G. S. (1996). Changes in Pigments and Volatiles of Saffron (Crocus sativus L) During Processing and Storage. Journal of the Science of Food and Agriculture, 71(1), 27-32.
  • Ramadan, A., Soliman, G., Mahmoud, S. S., Nofal, S. M., & Abdel-Rahman, R. F. (2012). Evaluation of the safety and antioxidant activities of Crocus sativus and Propolis ethanolic extracts. Journal of Saudi Chemical Society, 16(1), 13-21.
  • Rauha, J. P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Pihlaja, K., Vuorela, H., Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56(1), 3-12.
  • Rios, J. L., Recio, M. C., Giner, R. M., & Manez, S. (1996). An update review of saffron and its active constituents. Phytotherapy Research, 10(3), 189-193.
  • Robak, J., & Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology, 37(5), 837-841.
  • Sağdıç, O., Kuşçu, A., Özcan, M., & Özçelik, S. (2002). Effects of Turkish spice extracts at various concentrations on the growth of Escherichia coli O157: H7. Food Microbiology, 19(5), 473-480.
  • Smith-Palmer, A., Stewart, J., & Fyfe, L. (2001). The potential application of plant essential oils as natural food preservatives in soft cheese. Food Microbiology, 18(4), 463-470.
  • Sokmen, A., Gulluce M., Akpulat H.A, Daferera D., Tepe B., Polissiou M., Sokmen M., Sahin F. (2004). The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius, Food Control, 15, 627–634.
  • Soureshjan, E. H., & Heidari, M. (2014). In vitro variation in antibacterial activity plant extracts on Glaucium elegans and saffron (Crocus sativus). Bangladesh Journal of Pharmacology, 9(3), 275-278.
  • Srivastava, J. P., Lambert, J., & Vietmeyer, N. (1996). Medicinal plants: An expanding role in development. The World Bank.
  • Stefanakis, M. K., Anastasopoulos, E., Katerinopoulos, H. E., & Makridis, P. (2014). Use of essential oils extracted from three Origanum species for disinfection of cultured rotifers (B rachionus plicatilis). Aquaculture Research, 45(11), 1861-1866.
  • Stević, T., Šavikin, K., Ristić, M., Zdunić, G., Janković, T., Krivokuća-Đokić, D., & Vulić, T. (2010). Composition and antimicrobial activity of the essential oil of the leaves of black currant (Ribes nigrum L.) cultivar Čačanska crna. Journal of the Serbian Chemical Society, 75(1), 35-43.
  • Tabart, J., Kevers, C., Evers, D., & Dommes, J. (2011). Ascorbic acid, phenolic acid, flavonoid, and carotenoid profiles of selected extracts from Ribes nigrum. Journal of Agricultural and Food Chemistry, 59(9), 4763-4770.
  • Tabart, J., Kevers, C., Pincemail, J., Defraigne, J. O., & Dommes, J. (2006). Antioxidant capacity of black currant varies with organ, season, and cultivar. Journal of Agricultural and Food Chemistry, 54(17), 6271-6276.
  • Tabart, J., Kevers, C., Sipel, A., Pincemail, J., Defraigne, J. O., & Dommes, J. (2007). Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chemistry, 105(3), 1268-1275.
  • Tepe, B., Daferera, D., Sökmen, M., Polissiou, M., & Sökmen, A. (2004). In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eigii M. Zohary et PH Davis. Journal of Agricultural and Food Chemistry, 52(5), 1132-1137.
  • Ting, W. E., & Deibel, K. E. (1991). Sensitivity of Listeria monocytogenes to spices at two temperatures. Journal of Food Safety, 12(2), 129-137.
  • Üner, Y., Aksu, H., & Ergün, Ö. (2000). Baharatın çeşitli mikroorganizmalar üzerine etkileri. İstanbul Üniversitesi Veteriner Fakültesi Dergisi, 26(1), 1-10.
  • Vagiri, M. R. (2012). Black currant (Ribes nigrum L.)-an insight into the crop. Introductory Paper at the Faculty of Landscape Planning, Horticulture and Agricultural Science (No. 2012: 2). Swedish University of Agricultural Sciences. pp1-58. ISSN 1654-3580.
  • Verma, S. K., & Bordia, A. (1998). Antioxidant property of saffron in man. Indian Journal of Medical Sciences, 52(5), 205-207.
  • Wanner, M. J., Koomen, G. J., & Dung, N. X. (1993). Thymoquinone from Eupatorium ayapana. Planta Medica, 59(01), 99-99.
  • WHO (World Health Organization). (2005). Food safety. WORLD Health Organization. Available From: www.who.int/mediacentre/factsheets/fs237/en/ [Accessed 28 November 2020].
  • WHO, 2008. Exposure assessment of microbiological hazards in food. World Health Organization. Available from: www. who.int/foodsafety/publications/micro/en/report.pdf [Accessed 28 November 2020].
  • Winterhalter, P., & Straubinger, M. (2000). Saffron—renewed interest in an ancient spice. Food Reviews International, 16(1), 39-59.
  • Wong, P. Y., & Kitts, D. D. (2006). Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chemistry, 97(3), 505-515.
  • Zheng, W., & Wang, S. Y. (2001). Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry, 49(11), 5165-5170.
Toplam 89 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gülten Ökmen 0000-0003-3207-6715

Kutbettin Arslan 0000-0002-7724-7875

Rıdvan Tekin 0000-0001-7282-4613

İrem Çamur Bu kişi benim 0000-0002-9531-5296

Sabri Gorda Bu kişi benim 0000-0002-9531-5296

Proje Numarası BAP-14/054
Yayımlanma Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 22

Kaynak Göster

APA Ökmen, G., Arslan, K., Tekin, R., Çamur, İ., vd. (2021). Antimicrobial and Antioxidant Activities of Different Spice Extracts. Avrupa Bilim Ve Teknoloji Dergisi(22), 421-429. https://doi.org/10.31590/ejosat.848958