[1] Lucchetta M.C. Saporiti F. Audebert F., Improvement of surface properties of an Al-Sn-Cu plain bearing alloy produced by rapid solidification. Journal of Alloys and Compounds, 805 (2019) 709-717.
[2] Prucka M., Development of an Engine Stop/Start at Idle System. SAE
[3] Technical Paper, 2005-01-0069.Tie D. Guan R. Guo N. Zhao Z. Su N. Li J. and Zhang Y., Effects of Different Heat Treatment on Microstructure, Mechanical and Conductive Properties of Continuous Rheo-Extruded Al-0.9Si-0.6Mg (wt%) Alloy, Metals, 5 (2015) 648-655.
[4] Tie D. Wang Y. Wang X. Guan R. Yan L. Zhang J. Cai Z. Zhao Y. Gao F and Liu H., Microstructure Evolution and Properties Tailoring of Rheo-Extruded Al-Sc-Zr-Fe Conductor via Thermo-Mechanical Treatment, Metals, 13 (2020) 845-10.
[5] Salinas D.R. Bessone J.B., Electrochemical Behavior of Al-5%Zn-0.1%Sn Sacrificial Anode in Aggressive Media: Influence of Its Alloying Elements and the Solidification Structure, Corrosion, 47 (1991) 665-673.
[6] Kliskic M. Radosevic J. Aljinovic L.J., Behaviour of Al-Sn alloy on the negative side of the open-circuit potential, J. Appl. Electrochem., 24 (1994) 814-818.
[7] Gudic S. Radosevic J. Kliskic M., Impedance and transient study of aluminium barrier-type oxide films, J. Appl. Electrochem, 26 (1996) 1027-1035.
[8] Gudic S. Radosevic J. Kliskic M., Impedence transient study of barrier ®lms on aluminium and Al-Sn alloys. Proceedings of the Symposium on Passivity and its Breakdown. Electrochemical Society, INC, New Jersey, 1997, p. 689.
[9] Bessone J.B. Flamini D.O. Saidman S.B., Comprehensive model for the activation mechanism of Al-Zn Alloys produced by Indium, Corros Sci., 47 (2005) 95-105.
[10] Reboul M.C. Gimenez P.H. Rameau J.J., A Proposed Activation Mechanism for Al Anodes, Corrosion, 40 (1984) 366-371.
[11] Tamada A. Tamura Y., The electrochemical characteristics of aluminum galvanic anodes in an arctic seawater, Corros. Sci., 34 (1993) 261-277.
[12] Khireche S. Boughrara D. Kadri A. Hamadou L. Benbrahim N., Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.%NaCl solution, Corrosion Science, 87 (2014) 504-516.
[13] El Shayeb H.A. Abd El Wahab F.M. Zein El Abedin S., Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions, Corrosion Science, 43 (2001) 655-669.
[14] Ari M. Saatçi B. Gündüz M. Meydaneri F. Bozoklu M., Microstructure and thermo-electrical transport properties of Cd–Sn alloys, M. Mater. Charact., 59 (2008) 624-630.
[15] Ari M. Saatçi B. Gündüz M. Payveren M. Durmus S., Thermo-electrical characterization of Sn–Zn alloys, Mater. Charact,. 59 (2008) 757-763.
[16] Saatci B. Ari M. Gündüz M. Meydaneri F. Bozoklu M. Durmus S., Thermal and Electrical Conductivities Of Cd-Zn Alloys, J. Phys. Condens. Matter, 18 (2006) 10643-10653.
[17] Jǔskenas R. Mockus Z. Kanapeckaite S. Stalnionis G. Survila A., XRD studies of the phase composition of the electrodeposited copper-rich Cu–Sn alloys, Electrochimica Acta, 52 (2006) 928-935.
[18] Ortiz A.L. Shaw L., X-ray diffraction analysis of a severely plastically deformed aluminum alloy, Acta Mater., 52 (2004) 2185-2197.
[19] Pinasco M.R. Cordano E. Giovannini M., X-ray diffraction and microstructural study of PFM precious metal dental alloys under different metallurgical conditions, J.Alloys Compd., 289 (1999) 289-298.
[20] Kasai M. Matsubara E. Saida J. Nakayama M. Uematsu K. Zhang T. Inoue A., Crystallisation behaviour of Cu60Zr30Ti10 bulk glassy alloy, Mater. Sci. Eng. A, 375 (2004) 744-748.
[21] Cullity B.D., Elements of X-Ray Diffraction, third ed., United States of America: Addison-Wesley Publishing Company, Inc, 1967.
[22] Callister W.D., Materials Science and Engineering-an Introduction, New York: John Wileyand Sons, 1997.
[23] Zhou D.J., Study on Al-Sn-Si-Cu Bearing Alloy, J. Light Alloy Fabr. Technol., 28 (5) (2000) 44-46.
[24] G.C., Influence of Silicon Content on Friction and Wear Characteristics of New Al-Sn-Si Alloys, The Chin. J. Nonferrous Metals, 8 (9) (1998) 101-105.
[25] Şahin M. Çadırlı E. Bayram Ü. Ata Esener P., Investigation of the thermoelectrical properties of the Sn91.22x–Zn8.8–Agx, Journal of Thermal Analysis and Calorimetry, 132 (2018) 317–325.
[26] Kittel C. Introduction to solid state physics, . 6th ed., New York: Wiley, 1965.
[27] Li X. Yu J.J., Modeling the effects of Cu variations on the precipitated phases and properties of Al-Zn-Mg-Cu alloys, J. Mater. Eng. Perform., 22 (2013) 2970–2981.
[28] Hamilton C. Sommers A. Dymek S., A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions, Int. J. Mach. Tool. Manu., 49 (2009) 230–238.
[29] Murthy K.V.S. Girisha D.P. Keshavamurthy Varol R. T. Koppad P.G., Mechanical and thermal properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging, Prog. Nat. Sci.-Mater., 27 (2017) 474–481.
[30] Kumar G.S. Prasad G. Pohl R.O., Review experimental determinations of the Lorenz number, J Mater Sci., 28 (1993) 4261–4272.
[31] Smith C.S., Palmer E.W., Thermal and electric conductivies of copper alloys, Trans. AIME, 117 (1935) 225-243.
[32] Çadırlı E. Kaya H. Büyük U. Şahin M. Üstün E. Gündüz M., Investigation of the thermo-electrical properties of A707 alloys, Thermochimica Acta, 673 (2019) 177–184
[33] Y. Yao, J. Fry, M.E. Fine, L.M. Keer., The Wiedemann–Franz–Lorenz relation for lead-free solder and intermetallic materials, Acta Mater., 61 (2013) 1525–1536.
Determination of the electrical and thermal properties of Al-Sn-Zn alloys
In the present work, the electrical resistivity, thermal conductivity and microstructure of the 70 at. % Al-15 at. % Sn-15 at. % Zn alloy have been investigated. The electrical resistivity of the alloy was obtained by four-point probe (DC 4PPT) method. Electrical resistivity measurements are used in conjunction with Wiedeman-Franz (W-F) law and Smith-Palmer (S-P) equations to obtain the thermal conductivity of the alloy. The microstructure parameters of the Al-Sn-Zn ternary alloy were obtained by XRD. The surface and phases of alloy were showed by SEM, MAPPING and the composition of each phase was determined by EDX.
[1] Lucchetta M.C. Saporiti F. Audebert F., Improvement of surface properties of an Al-Sn-Cu plain bearing alloy produced by rapid solidification. Journal of Alloys and Compounds, 805 (2019) 709-717.
[2] Prucka M., Development of an Engine Stop/Start at Idle System. SAE
[3] Technical Paper, 2005-01-0069.Tie D. Guan R. Guo N. Zhao Z. Su N. Li J. and Zhang Y., Effects of Different Heat Treatment on Microstructure, Mechanical and Conductive Properties of Continuous Rheo-Extruded Al-0.9Si-0.6Mg (wt%) Alloy, Metals, 5 (2015) 648-655.
[4] Tie D. Wang Y. Wang X. Guan R. Yan L. Zhang J. Cai Z. Zhao Y. Gao F and Liu H., Microstructure Evolution and Properties Tailoring of Rheo-Extruded Al-Sc-Zr-Fe Conductor via Thermo-Mechanical Treatment, Metals, 13 (2020) 845-10.
[5] Salinas D.R. Bessone J.B., Electrochemical Behavior of Al-5%Zn-0.1%Sn Sacrificial Anode in Aggressive Media: Influence of Its Alloying Elements and the Solidification Structure, Corrosion, 47 (1991) 665-673.
[6] Kliskic M. Radosevic J. Aljinovic L.J., Behaviour of Al-Sn alloy on the negative side of the open-circuit potential, J. Appl. Electrochem., 24 (1994) 814-818.
[7] Gudic S. Radosevic J. Kliskic M., Impedance and transient study of aluminium barrier-type oxide films, J. Appl. Electrochem, 26 (1996) 1027-1035.
[8] Gudic S. Radosevic J. Kliskic M., Impedence transient study of barrier ®lms on aluminium and Al-Sn alloys. Proceedings of the Symposium on Passivity and its Breakdown. Electrochemical Society, INC, New Jersey, 1997, p. 689.
[9] Bessone J.B. Flamini D.O. Saidman S.B., Comprehensive model for the activation mechanism of Al-Zn Alloys produced by Indium, Corros Sci., 47 (2005) 95-105.
[10] Reboul M.C. Gimenez P.H. Rameau J.J., A Proposed Activation Mechanism for Al Anodes, Corrosion, 40 (1984) 366-371.
[11] Tamada A. Tamura Y., The electrochemical characteristics of aluminum galvanic anodes in an arctic seawater, Corros. Sci., 34 (1993) 261-277.
[12] Khireche S. Boughrara D. Kadri A. Hamadou L. Benbrahim N., Corrosion mechanism of Al, Al-Zn and Al-Zn-Sn alloys in 3wt.%NaCl solution, Corrosion Science, 87 (2014) 504-516.
[13] El Shayeb H.A. Abd El Wahab F.M. Zein El Abedin S., Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions, Corrosion Science, 43 (2001) 655-669.
[14] Ari M. Saatçi B. Gündüz M. Meydaneri F. Bozoklu M., Microstructure and thermo-electrical transport properties of Cd–Sn alloys, M. Mater. Charact., 59 (2008) 624-630.
[15] Ari M. Saatçi B. Gündüz M. Payveren M. Durmus S., Thermo-electrical characterization of Sn–Zn alloys, Mater. Charact,. 59 (2008) 757-763.
[16] Saatci B. Ari M. Gündüz M. Meydaneri F. Bozoklu M. Durmus S., Thermal and Electrical Conductivities Of Cd-Zn Alloys, J. Phys. Condens. Matter, 18 (2006) 10643-10653.
[17] Jǔskenas R. Mockus Z. Kanapeckaite S. Stalnionis G. Survila A., XRD studies of the phase composition of the electrodeposited copper-rich Cu–Sn alloys, Electrochimica Acta, 52 (2006) 928-935.
[18] Ortiz A.L. Shaw L., X-ray diffraction analysis of a severely plastically deformed aluminum alloy, Acta Mater., 52 (2004) 2185-2197.
[19] Pinasco M.R. Cordano E. Giovannini M., X-ray diffraction and microstructural study of PFM precious metal dental alloys under different metallurgical conditions, J.Alloys Compd., 289 (1999) 289-298.
[20] Kasai M. Matsubara E. Saida J. Nakayama M. Uematsu K. Zhang T. Inoue A., Crystallisation behaviour of Cu60Zr30Ti10 bulk glassy alloy, Mater. Sci. Eng. A, 375 (2004) 744-748.
[21] Cullity B.D., Elements of X-Ray Diffraction, third ed., United States of America: Addison-Wesley Publishing Company, Inc, 1967.
[22] Callister W.D., Materials Science and Engineering-an Introduction, New York: John Wileyand Sons, 1997.
[23] Zhou D.J., Study on Al-Sn-Si-Cu Bearing Alloy, J. Light Alloy Fabr. Technol., 28 (5) (2000) 44-46.
[24] G.C., Influence of Silicon Content on Friction and Wear Characteristics of New Al-Sn-Si Alloys, The Chin. J. Nonferrous Metals, 8 (9) (1998) 101-105.
[25] Şahin M. Çadırlı E. Bayram Ü. Ata Esener P., Investigation of the thermoelectrical properties of the Sn91.22x–Zn8.8–Agx, Journal of Thermal Analysis and Calorimetry, 132 (2018) 317–325.
[26] Kittel C. Introduction to solid state physics, . 6th ed., New York: Wiley, 1965.
[27] Li X. Yu J.J., Modeling the effects of Cu variations on the precipitated phases and properties of Al-Zn-Mg-Cu alloys, J. Mater. Eng. Perform., 22 (2013) 2970–2981.
[28] Hamilton C. Sommers A. Dymek S., A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions, Int. J. Mach. Tool. Manu., 49 (2009) 230–238.
[29] Murthy K.V.S. Girisha D.P. Keshavamurthy Varol R. T. Koppad P.G., Mechanical and thermal properties of AA7075/TiO2/Fly ash hybrid composites obtained by hot forging, Prog. Nat. Sci.-Mater., 27 (2017) 474–481.
[30] Kumar G.S. Prasad G. Pohl R.O., Review experimental determinations of the Lorenz number, J Mater Sci., 28 (1993) 4261–4272.
[31] Smith C.S., Palmer E.W., Thermal and electric conductivies of copper alloys, Trans. AIME, 117 (1935) 225-243.
[32] Çadırlı E. Kaya H. Büyük U. Şahin M. Üstün E. Gündüz M., Investigation of the thermo-electrical properties of A707 alloys, Thermochimica Acta, 673 (2019) 177–184
[33] Y. Yao, J. Fry, M.E. Fine, L.M. Keer., The Wiedemann–Franz–Lorenz relation for lead-free solder and intermetallic materials, Acta Mater., 61 (2013) 1525–1536.
Alper Billur, C., & Saatçi, B. (2020). Determination of the electrical and thermal properties of Al-Sn-Zn alloys. Cumhuriyet Science Journal, 41(4), 908-915. https://doi.org/10.17776/csj.745443