Research Article
BibTex RIS Cite

Investigation on the relationship between salinity stress and epibrassinolide in spinach (Spinacia oleracea L. cv. Matador) seedlings

Year 2020, , 131 - 138, 22.03.2020
https://doi.org/10.17776/csj.596360

Abstract

Soil salinity is a very important abiotic stress condition that affects plant growth and crop yield. Photosynthetic activity, fresh weight, total protein amount decrease due to salinity condition. Brassinosteroids (BR) are a new group of hormones in the steroidal structure which is involved in the plant hormone group. BRs play an important role in various physiological processes. BR shave a curative effect on the plants exposed to environmental stress. In this study, the effect on seedling development was examined by spraying 24-epibrassinolide (eBL), the active form of brassinosteroids, on the seedlings exposed to salt stress. For this purpose, seedlings are divided into three groups such as Hoagland, Hoagland+NaCl, Hoagland+NaCl+eBL. As a result of preliminary experiments, 150 mM NaCl as the salt concentration reducing seedling growth and 10-9 M eBL which promotes growth by reducing this inhibition were determined as the appropriate concentration. This study; biochemical analysis of spinach seedlings exposed to salt stress and applied to eBL showed the curative effect of eBL on salt toxicity.

Supporting Institution

İstanbul Üniversitesi (BAP birimi)

Project Number

IUBAP, 55504

Thanks

The authors thank Department of Scientific Research Projects Coordination Unit of Istanbul University (IUBAP, 55504) for the financial support by the project.

References

  • [1] Mahajan S. and Tuteja N., Cold, Salinity and Drought Stresses: An Overview, Arch. Biochem. Biophys., 444 (2005) 139—158.
  • [2] Diaz, I., Plant Defense Genes Against Biotic Stresses, International Jour. Mol. Scie., 19(2446) (2018) 1-5.
  • [3] Madani B., Mirshekari A., Imahori Y., Physiological Response to Stress, Postharvest Physiology and Biochemistry of Fruits and Vegetables. Wood Head Publishing, Chapter 19 (2019) 405-423.
  • [4] Shao H.B., Chu L.Y., Jaleel C.A.,Zhao C.X., Water-deficit Stress-induced Anatomical Changes in Higher Plants, C. R. Biol., 331 (2008)215—225.
  • [5] Kul R., Esringü A., Dadasoglu E., Sahin Ü., Turan M., Örs S., Ekinci M., Agar G. and Yıldırım, E., Melatonin: Role in Increasing Plant Tolerance in Abiotic Stress Conditions. Abiotic and Biotic Stress in Plants, (2019) 1-19 DOI: http://dx.doi.org/10.5772/intechopen.82590.
  • [6] Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M. and Zheng B., Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 24(2452) (2019) 1-22.
  • [7] Parida A.K. and Das A.B., Salt Tolerance and Salinity Effects on Plants: AReview, Ecotoxicol. Environ. Saf., 60 (2005) 324—349.
  • [8] Munns R. and Tester M., Mechanisms of Salinity Tolerance, Annu. Rev. Plant Biol., 59 (2008) 651—681.
  • [9] Hong C.Y., Chao Y.Y., Yang M.Y., Cho S.C. and Kao C.H., Na+ but not Cl- or Osmotic Stress is Involved in NaCl Induced Expression of Glutathione Reductase in Roots of Rice Seedlings, J. Plant Physiol., 166 (2009) 1598—1606.
  • [10] Çıngıl-Barış Ç. and Sağlam-Çağ S., The Effects of Brassinosteroids on Sequential Leaf Senescence Occurring in Glycine max L, International Journal of Bio-technology and Research 6 (2016) 7—16.
  • [11] Parsons T.R. and Strickland J.D.H., Discussion of Spectrophotometric Determination of Marine Pigments, with Revised Equations for Ascerting Chlorophylls and Carotenoids, J. Mar. Res., 21 (1963) 115—163.
  • [12] Bradford R., A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein Dye-binding, Anal. Biochem., 72 (1976) 248—254.
  • [13] Birecka H., Briber K.A. and Catalfamo J.L., Comparative Studies on Tobacco Pith and Sweet Potato Root Isoperoxidases in Relation to Injury, Indoleacetic Acid, and Ethylene Effects, Plant Physiol., 52 (1973) 43—49.
  • [14] Beauchamp C. and Fridovich I., Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels, Anal Biochem., 44 (1971) 276—287.
  • [15] Sairam R.K., Effects of Homobrassinolide Application on Plant Metabolism and Grain Yield under Irrigated and Moisture-stress Conditions of Two Wheat Varieties, Plant Growth Regulation, 14 (1994) 173—181.
  • [16] Khalid A. and Aftab F., Effect of Exogenous Application of 24-epibrassinolide on Growth, Protein Contents and Antioxidant Enzyme Activities of in vitro-grown Solanum tuberosum L. under Salt Stress, In Vitro Cell. Dev. Biol., Plant, 52 (2016) 81—91.
  • [17] Nouman W., Basra S.M.A., Yasmeen A., Gull T., Hussain S.B., Zubair M. and Gull R., Seed Priming Improves the Emergence Potential, Growth and Antioxidant System of Moringa oleifera under Saline Conditions, Plant Growth Regul., 73 (2014) 267—278.
  • [18] Arora N., Bhardwaj R., Sharma P. and Arora H.K., Effects of 28-homobrassinolide on Growth, Lipid Peroxidation and Antioxidative Enzyme Activities in Seedlings of Zea mays L. under Salinity Stress, Acta Physiol. Plantarum, 30 (2008) 833—839.
  • [19] Tester M. and Davenport R., Na+ Tolerance and Na+ Transport in Higher Plants, Ann. Bot., 91 (2003) 503¬¬¬—527.
  • [20] Ferroni L., Baldisserotto C., Pantaleoni I., Billi P., Fasulo M.P. and Pancaldi S., High Salinity Alters Chloroplast Morpho-physiology in a Freshwater Kirchneriella Species (Selenastraceae) from Ethiopian Lake Awasa, Am. J. Bot., 94 (2007) 1972—1983.
  • [21] Gökdoğan E.Y. and Bürün B., 24-epibrassinolid Ön Uygulaması Yapılmış Domates (Lycopersicon esculentum Mill.) Tohumlarının NaCl Stresi Koşullarında Çimlenmesi ve Fide Gelişimi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 15 (2015) 18—27.
  • [22] Holmberg N. and Bulow L., Improving Stress Tolerance in Plants by Gene Transfer, Trends Plant Sci., 3 (1998) 61—66.
  • [23] Breusegem F.V., Vranová E., Dat. J.F. and Inz D., The Role of Active Oxygen Species in Plant Signal Transduction, Plant Sci., 161 (2001) 405—414.
  • [24] Mobin M. and Khan N.A., Photosynthetic Activity, Pigment Composition and Anti-oxidative Response of Two Mustard (Brassica juncea) Cultivars Differing in Photosynthetic Capacity Subjected to Cadmium Stress, J. Plant Physiol., 164 (2007) 601—610.
  • [25] Singh S., Khan N.A., Nazar R. and Anjum N.A., Photosynthetic Traits and Activities of Antioxidant Enzymes in Black Gram (Vigna mungo L. Hepper) under Cadmium Stress, American Journal of Plant Physiology, 3 (2008) 25—32.
  • [26] Lechno S., Zamski E. and Tel-Or E., Salt Stress-induced Responses in Cucumber Plants, J. Plant Physiol., 150 (1997) 206—211.
  • [27] Mandhania S., Madan S. and Sawhney V., Antioxidant Defense Mechanism under Salt Stress in Wheat Seedlings, Biol. Plant., 50 (2006) 227—231.
  • [28] Maksimović J.D., Zhang J., Zeng F., Živanović B.D., Shabala L., Zhou M. and Shabala S., Linking Oxidative and Salinity Stress Tolerance in Barley: can Root Antioxidant Enzyme Activity be used as a Measure of Stress Tolerance?, Plant Soil, 365 (2013) 141—155.
  • [29] Sharma P., Jha A.B., Dubey R.S. and Pesserakl, M., Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions, Jour. of Bot., 26 (2012) 1-26.
  • [30] Fu M.Y., Li C. and Ma F.W., Physiological Responses and Tolerance to NaCl Stress Indifferent Biotypes of Malus prunifolia, Euphytica, 189 (2013) 1011—09.
  • [31] Akçay D. and Eşitken A., MM106 Anacına ve Üzerine Aşılı Golden Delicious Elma Çeşidine Tuz Stresinin Etkileri, Selçuk Tarım Bilim. Derg., 3 (2016) 228—232.
  • [32] Çoban Ö., Brassinosteroid Uygulamalarının Tuz Stresi Altındaki Nanede (Mentha piperita L.)Bazı Fiziksel ve Biyokimyasal Özellikler ile Sekonder Metabolit Birikimi Üzerine Etkileri, Yüksek Lisans Tezi, Isparta: Süleyman Demirel Üniversitesi, 2014.
  • [33] Çoban Ö., and Baydar N.G., Brassinosteroid Effects on Some Physical and Biochemical Properties and Secondary Metabolite Accumulation in Peppermint (Mentha piperita L.) under Salt Stress, Ind. Crops Prod., 86 (2016) 251—258.
  • [34] Liu D., Jiang W., Wang W., Zhao F. and Lu C., Effects of Lead on Root Growth, Cell Division and Nucleolus of Allium cepa, Environ. Pollut., 86 (1994) 1—4.
Year 2020, , 131 - 138, 22.03.2020
https://doi.org/10.17776/csj.596360

Abstract

Project Number

IUBAP, 55504

References

  • [1] Mahajan S. and Tuteja N., Cold, Salinity and Drought Stresses: An Overview, Arch. Biochem. Biophys., 444 (2005) 139—158.
  • [2] Diaz, I., Plant Defense Genes Against Biotic Stresses, International Jour. Mol. Scie., 19(2446) (2018) 1-5.
  • [3] Madani B., Mirshekari A., Imahori Y., Physiological Response to Stress, Postharvest Physiology and Biochemistry of Fruits and Vegetables. Wood Head Publishing, Chapter 19 (2019) 405-423.
  • [4] Shao H.B., Chu L.Y., Jaleel C.A.,Zhao C.X., Water-deficit Stress-induced Anatomical Changes in Higher Plants, C. R. Biol., 331 (2008)215—225.
  • [5] Kul R., Esringü A., Dadasoglu E., Sahin Ü., Turan M., Örs S., Ekinci M., Agar G. and Yıldırım, E., Melatonin: Role in Increasing Plant Tolerance in Abiotic Stress Conditions. Abiotic and Biotic Stress in Plants, (2019) 1-19 DOI: http://dx.doi.org/10.5772/intechopen.82590.
  • [6] Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M. and Zheng B., Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 24(2452) (2019) 1-22.
  • [7] Parida A.K. and Das A.B., Salt Tolerance and Salinity Effects on Plants: AReview, Ecotoxicol. Environ. Saf., 60 (2005) 324—349.
  • [8] Munns R. and Tester M., Mechanisms of Salinity Tolerance, Annu. Rev. Plant Biol., 59 (2008) 651—681.
  • [9] Hong C.Y., Chao Y.Y., Yang M.Y., Cho S.C. and Kao C.H., Na+ but not Cl- or Osmotic Stress is Involved in NaCl Induced Expression of Glutathione Reductase in Roots of Rice Seedlings, J. Plant Physiol., 166 (2009) 1598—1606.
  • [10] Çıngıl-Barış Ç. and Sağlam-Çağ S., The Effects of Brassinosteroids on Sequential Leaf Senescence Occurring in Glycine max L, International Journal of Bio-technology and Research 6 (2016) 7—16.
  • [11] Parsons T.R. and Strickland J.D.H., Discussion of Spectrophotometric Determination of Marine Pigments, with Revised Equations for Ascerting Chlorophylls and Carotenoids, J. Mar. Res., 21 (1963) 115—163.
  • [12] Bradford R., A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein Dye-binding, Anal. Biochem., 72 (1976) 248—254.
  • [13] Birecka H., Briber K.A. and Catalfamo J.L., Comparative Studies on Tobacco Pith and Sweet Potato Root Isoperoxidases in Relation to Injury, Indoleacetic Acid, and Ethylene Effects, Plant Physiol., 52 (1973) 43—49.
  • [14] Beauchamp C. and Fridovich I., Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels, Anal Biochem., 44 (1971) 276—287.
  • [15] Sairam R.K., Effects of Homobrassinolide Application on Plant Metabolism and Grain Yield under Irrigated and Moisture-stress Conditions of Two Wheat Varieties, Plant Growth Regulation, 14 (1994) 173—181.
  • [16] Khalid A. and Aftab F., Effect of Exogenous Application of 24-epibrassinolide on Growth, Protein Contents and Antioxidant Enzyme Activities of in vitro-grown Solanum tuberosum L. under Salt Stress, In Vitro Cell. Dev. Biol., Plant, 52 (2016) 81—91.
  • [17] Nouman W., Basra S.M.A., Yasmeen A., Gull T., Hussain S.B., Zubair M. and Gull R., Seed Priming Improves the Emergence Potential, Growth and Antioxidant System of Moringa oleifera under Saline Conditions, Plant Growth Regul., 73 (2014) 267—278.
  • [18] Arora N., Bhardwaj R., Sharma P. and Arora H.K., Effects of 28-homobrassinolide on Growth, Lipid Peroxidation and Antioxidative Enzyme Activities in Seedlings of Zea mays L. under Salinity Stress, Acta Physiol. Plantarum, 30 (2008) 833—839.
  • [19] Tester M. and Davenport R., Na+ Tolerance and Na+ Transport in Higher Plants, Ann. Bot., 91 (2003) 503¬¬¬—527.
  • [20] Ferroni L., Baldisserotto C., Pantaleoni I., Billi P., Fasulo M.P. and Pancaldi S., High Salinity Alters Chloroplast Morpho-physiology in a Freshwater Kirchneriella Species (Selenastraceae) from Ethiopian Lake Awasa, Am. J. Bot., 94 (2007) 1972—1983.
  • [21] Gökdoğan E.Y. and Bürün B., 24-epibrassinolid Ön Uygulaması Yapılmış Domates (Lycopersicon esculentum Mill.) Tohumlarının NaCl Stresi Koşullarında Çimlenmesi ve Fide Gelişimi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 15 (2015) 18—27.
  • [22] Holmberg N. and Bulow L., Improving Stress Tolerance in Plants by Gene Transfer, Trends Plant Sci., 3 (1998) 61—66.
  • [23] Breusegem F.V., Vranová E., Dat. J.F. and Inz D., The Role of Active Oxygen Species in Plant Signal Transduction, Plant Sci., 161 (2001) 405—414.
  • [24] Mobin M. and Khan N.A., Photosynthetic Activity, Pigment Composition and Anti-oxidative Response of Two Mustard (Brassica juncea) Cultivars Differing in Photosynthetic Capacity Subjected to Cadmium Stress, J. Plant Physiol., 164 (2007) 601—610.
  • [25] Singh S., Khan N.A., Nazar R. and Anjum N.A., Photosynthetic Traits and Activities of Antioxidant Enzymes in Black Gram (Vigna mungo L. Hepper) under Cadmium Stress, American Journal of Plant Physiology, 3 (2008) 25—32.
  • [26] Lechno S., Zamski E. and Tel-Or E., Salt Stress-induced Responses in Cucumber Plants, J. Plant Physiol., 150 (1997) 206—211.
  • [27] Mandhania S., Madan S. and Sawhney V., Antioxidant Defense Mechanism under Salt Stress in Wheat Seedlings, Biol. Plant., 50 (2006) 227—231.
  • [28] Maksimović J.D., Zhang J., Zeng F., Živanović B.D., Shabala L., Zhou M. and Shabala S., Linking Oxidative and Salinity Stress Tolerance in Barley: can Root Antioxidant Enzyme Activity be used as a Measure of Stress Tolerance?, Plant Soil, 365 (2013) 141—155.
  • [29] Sharma P., Jha A.B., Dubey R.S. and Pesserakl, M., Reactive oxygen species, oxidative damage and antioxidative defense mechanism in plants under stressful conditions, Jour. of Bot., 26 (2012) 1-26.
  • [30] Fu M.Y., Li C. and Ma F.W., Physiological Responses and Tolerance to NaCl Stress Indifferent Biotypes of Malus prunifolia, Euphytica, 189 (2013) 1011—09.
  • [31] Akçay D. and Eşitken A., MM106 Anacına ve Üzerine Aşılı Golden Delicious Elma Çeşidine Tuz Stresinin Etkileri, Selçuk Tarım Bilim. Derg., 3 (2016) 228—232.
  • [32] Çoban Ö., Brassinosteroid Uygulamalarının Tuz Stresi Altındaki Nanede (Mentha piperita L.)Bazı Fiziksel ve Biyokimyasal Özellikler ile Sekonder Metabolit Birikimi Üzerine Etkileri, Yüksek Lisans Tezi, Isparta: Süleyman Demirel Üniversitesi, 2014.
  • [33] Çoban Ö., and Baydar N.G., Brassinosteroid Effects on Some Physical and Biochemical Properties and Secondary Metabolite Accumulation in Peppermint (Mentha piperita L.) under Salt Stress, Ind. Crops Prod., 86 (2016) 251—258.
  • [34] Liu D., Jiang W., Wang W., Zhao F. and Lu C., Effects of Lead on Root Growth, Cell Division and Nucleolus of Allium cepa, Environ. Pollut., 86 (1994) 1—4.
There are 34 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Natural Sciences
Authors

Serhat Seven

Serap Sağlam 0000-0002-4245-8031

Project Number IUBAP, 55504
Publication Date March 22, 2020
Submission Date July 24, 2019
Acceptance Date December 30, 2019
Published in Issue Year 2020

Cite

APA Seven, S., & Sağlam, S. (2020). Investigation on the relationship between salinity stress and epibrassinolide in spinach (Spinacia oleracea L. cv. Matador) seedlings. Cumhuriyet Science Journal, 41(1), 131-138. https://doi.org/10.17776/csj.596360