Research Article
BibTex RIS Cite

Determination of the annual effective dose distribution due to cosmic ray exposure of the Eastern Black Sea Region, Turkey

Year 2019, , 595 - 601, 30.09.2019
https://doi.org/10.17776/csj.596355

Abstract

In this study, annual effective
dose rate distribution due to cosmic radiation, which constitutes an important
part of natural radiation, was mapped in  spatial pixels for
three provinces in the Eastern Black Sea region (Artvin, Rize and Trabzon).
Cosmic ray-induced annual effective dose calculations were performed based on
latitude and altitude changes with EXPACS, an excel-based program. Besides, the
effect of cosmic radiation on the population living in the study area was
determined. For the entire study area, it was calculated the average effective
dose rate from Cosmic radiation as 0.65 mSv
y
-1 and range as (0.33-1.72) mSv
y
-1. The average annual collective effective dose rate was
determined approximately 508 person-Sv y-1.
Besides, the population-weighted average annual effective dose rates were
obtained as 449, 376 and 370 for Artvin, Rize and
Trabzon provinces, respectively. 

References

  • [1] C.M. Yeşilkanat, Y. Kobya, H. Taşkin, U. Çevik, Dose rate estimates and spatial interpolation maps of outdoor gamma dose rate with geostatistical methods; A case study from Artvin, Turkey, J. Environ. Radioact. 150 (2015) 132–144. doi:10.1016/j.jenvrad.2015.08.011.
  • [2] UNSCEAR, Source and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly with Annex B, United Nations, New York, 2000.
  • [3] C.T. Zeyrek, İyonize Radyasyon Uygulamaları İçin Güvenlik ve Korunmaya Yönelik Genel Kavramlar. (In Turkish), Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg. 17 (2013) 1–9.
  • [4] T. Sato, Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes, PLoS One. 11 (2016) 1–22. doi:10.1371/journal.pone.0160390.
  • [5] M. Bagshaw, P. Illig, The Aircraft Cabin Environment, Fourth Edi, Elsevier Inc., 2018. doi:10.1016/b978-0-323-54696-6.00047-1.
  • [6] B.G. Wilson, C.P. Nehra, Cosmic Ray Increases Associated with Solar Flares, J. Phys. Soc. Japan Suppl. 17 (1962) 269. https://ui.adsabs.harvard.edu/abs/1962JPSJS..17B.269W/abstract (accessed July 5, 2019).
  • [7] H. V. Neher, Cosmic rays at high latitudes and altitudes covering four solar maxima, J. Geophys. Res. 76 (1971) 1637–1651. doi:10.1029/JA076i007p01637.
  • [8] K. O’Brien, W. Friedberg, H.H. Sauer, D.F. Smart, Atmospheric cosmic rays and solar energetic particles at aircraft altitudes., Environ. Int. 22 (1996) 9–44. http://www.ncbi.nlm.nih.gov/pubmed/11542509.
  • [9] T. Sato, Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS, PLoS One. 10 (2015) 1–33. doi:10.1371/journal.pone.0144679.
  • [10] T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori, K. Okumura, T. Kai, S. Chiba, T. Furuta, L. Sihver, Particle and heavy ion transport code system, PHITS, version 2.52, J. Nucl. Sci. Technol. 50 (2013) 913–923. doi:10.1080/00223131.2013.814553.
  • [11] T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, T. Furuta, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori, K. Okumura, T. Kai, S. Chiba, L. Sihver, Overview of particle and heavy ion transport code system PHITS, Ann. Nucl. Energy. 82 (2015) 110–115. doi:10.1016/J.ANUCENE.2014.08.023.
  • [12] EXPACS, EXcel-based Program for calculating Atmospheric Cosmic-ray Spectrum (EXPACS),URL: https://phits.jaea.go.jp/expacs/, (2016).
  • [13] G. Cinelli, V. Gruber, L. De Felice, P. Bossew, M.A. Hernandez-Ceballos, T. Tollefsen, S. Mundigl, M. De Cort, European annual cosmic-ray dose: Estimation of population exposure, J. Maps. 13 (2017) 812–821. doi:10.1080/17445647.2017.1384934.
  • [14] T. Sato, Evaluation of world population-weighted effective dose due to cosmic ray exposure, Sci. Rep. 6 (2016) 6–12. doi:10.1038/srep33932.
  • [15] USGS, Digital elevation maps (DEM) data sets, http://earthexplorer.usgs.gov/ (Available date: 11.01.2015), (2013). http://earthexplorer.usgs.gov/.
  • [16] YEGM, Yenilenebilier Enerji Genel Müdrlüğü (YEGM), Tükiye Güneş Enerjisi Potansiyel Atlası (GEPA), URL: http://www.yegm.gov.tr/MyCalculator/, (2019).
  • [17] WorldPop, WorldPop (www.worldpop.org) and Center for International Earth Science Information Network (CIESIN), Columbia University, (2018). doi:https://dx.doi.org/10.5258/SOTON/WP00645.
  • [18] F.R. Stevens, A.E. Gaughan, C. Linard, A.J. Tatem, Disaggregating census data for population mapping using Random forests with remotely-sensed and ancillary data, PLoS One. 10 (2015) 1–22. doi:10.1371/journal.pone.0107042.
  • [19] Turkish Statistical Institute (TurkStat), Population Statistics, URL: http://www.turkstat.gov.tr/UstMenu.do?metod=temelist. Date Accessed: 14.02.2019, (2019).
  • [20] M. Eisenbud, T. Gesell, Enviromental Radioactivity, 4. edition, Academic Press, 1997.
  • [21] D.A.H. Rasolonjatovo, H. Suzuki, N. Hirabayashi, T. Nunomiya, T. Nakamura, N. Nakao, Measurement for the dose-rates of the cosmic-ray components on the ground., J. Radiat. Res. 43 Suppl (2002) S27-33. doi:10.1269/jrr.43.s27.
  • [22] R. Schlickeiser, Direct Observations of Cosmic Rays, in: 2002: pp. 25–71. doi:10.1007/978-3-662-04814-6_3.
  • [23] R. Ihaka, R. Gentleman, R: A Language for Data Analysis and Graphics, J. Comput. Graph. Stat. 5 (1996) 299–314. doi:10.1080/10618600.1996.10474713.
  • [24] Quantum GIS Development Team, Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project, (2018). https://qgis.org/en/site/index.html (date accessed: 10.12.2018).
  • [25] J. Böhner, M. Bock, V. Wichmann, E. Fischer, J. Wehberg, O. Conrad, B. Bechtel, H. Dietrich, L. Gerlitz, System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev. 8 (2015) 1991–2007. doi:10.5194/gmd-8-1991-2015.

Doğu Karadeniz Bölgesinde kozmik ışın kaynaklı yıllık etkin doz dağılımının belirlenmesi

Year 2019, , 595 - 601, 30.09.2019
https://doi.org/10.17776/csj.596355

Abstract

Bu çalışmada doğal radyasyonun önemli bir
kısmını oluşturan kozmik ışın kaynaklı yıllık etkin doz hızı dağılımı, Doğu
Karadeniz Bölgesindeki üç il için (Artvin, Rize ve Trabzon) ’lik mekânsal çözünürlükte haritalandırılmıştır. Kozmik
ışın kaynaklı yıllık etkin doz oranı hesaplamaları, Excel tabanlı çalışan bir
program olan EXPACS ile enlem ve rakım değişimlerine bağlı olarak
gerçekleştirilmiştir. Ayrıca çalışma alanında yaşayan nüfusun kozmik
radyasyondan etkilenme seviyeleri de tespit edilmiştir. Çalışma alanının tamam
için, Kozmik ışından kaynaklanan yılık etkin doz oranının ortalaması 0.65 mSv y-1ve değişim aralığı
(0.33-1.72) mSv y-1 olarak
hesaplanmıştır. Çalışma alanının geneli için yıllık kollektif etkin doz hızı
ise yaklaşık 508 insan-Sv y-1 olarak belirlenmiştir. Ayrıca kozmik
radyasyondan kaynaklanan kişi başı yılık etkin doz, sırasıyla Artvin, Rize ve
Trabzon için 449 , 376 ve 370 olarak tespit edilmiştir.

References

  • [1] C.M. Yeşilkanat, Y. Kobya, H. Taşkin, U. Çevik, Dose rate estimates and spatial interpolation maps of outdoor gamma dose rate with geostatistical methods; A case study from Artvin, Turkey, J. Environ. Radioact. 150 (2015) 132–144. doi:10.1016/j.jenvrad.2015.08.011.
  • [2] UNSCEAR, Source and effects of ionizing radiation, United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly with Annex B, United Nations, New York, 2000.
  • [3] C.T. Zeyrek, İyonize Radyasyon Uygulamaları İçin Güvenlik ve Korunmaya Yönelik Genel Kavramlar. (In Turkish), Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg. 17 (2013) 1–9.
  • [4] T. Sato, Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes, PLoS One. 11 (2016) 1–22. doi:10.1371/journal.pone.0160390.
  • [5] M. Bagshaw, P. Illig, The Aircraft Cabin Environment, Fourth Edi, Elsevier Inc., 2018. doi:10.1016/b978-0-323-54696-6.00047-1.
  • [6] B.G. Wilson, C.P. Nehra, Cosmic Ray Increases Associated with Solar Flares, J. Phys. Soc. Japan Suppl. 17 (1962) 269. https://ui.adsabs.harvard.edu/abs/1962JPSJS..17B.269W/abstract (accessed July 5, 2019).
  • [7] H. V. Neher, Cosmic rays at high latitudes and altitudes covering four solar maxima, J. Geophys. Res. 76 (1971) 1637–1651. doi:10.1029/JA076i007p01637.
  • [8] K. O’Brien, W. Friedberg, H.H. Sauer, D.F. Smart, Atmospheric cosmic rays and solar energetic particles at aircraft altitudes., Environ. Int. 22 (1996) 9–44. http://www.ncbi.nlm.nih.gov/pubmed/11542509.
  • [9] T. Sato, Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/EXPACS, PLoS One. 10 (2015) 1–33. doi:10.1371/journal.pone.0144679.
  • [10] T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori, K. Okumura, T. Kai, S. Chiba, T. Furuta, L. Sihver, Particle and heavy ion transport code system, PHITS, version 2.52, J. Nucl. Sci. Technol. 50 (2013) 913–923. doi:10.1080/00223131.2013.814553.
  • [11] T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, T. Furuta, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori, K. Okumura, T. Kai, S. Chiba, L. Sihver, Overview of particle and heavy ion transport code system PHITS, Ann. Nucl. Energy. 82 (2015) 110–115. doi:10.1016/J.ANUCENE.2014.08.023.
  • [12] EXPACS, EXcel-based Program for calculating Atmospheric Cosmic-ray Spectrum (EXPACS),URL: https://phits.jaea.go.jp/expacs/, (2016).
  • [13] G. Cinelli, V. Gruber, L. De Felice, P. Bossew, M.A. Hernandez-Ceballos, T. Tollefsen, S. Mundigl, M. De Cort, European annual cosmic-ray dose: Estimation of population exposure, J. Maps. 13 (2017) 812–821. doi:10.1080/17445647.2017.1384934.
  • [14] T. Sato, Evaluation of world population-weighted effective dose due to cosmic ray exposure, Sci. Rep. 6 (2016) 6–12. doi:10.1038/srep33932.
  • [15] USGS, Digital elevation maps (DEM) data sets, http://earthexplorer.usgs.gov/ (Available date: 11.01.2015), (2013). http://earthexplorer.usgs.gov/.
  • [16] YEGM, Yenilenebilier Enerji Genel Müdrlüğü (YEGM), Tükiye Güneş Enerjisi Potansiyel Atlası (GEPA), URL: http://www.yegm.gov.tr/MyCalculator/, (2019).
  • [17] WorldPop, WorldPop (www.worldpop.org) and Center for International Earth Science Information Network (CIESIN), Columbia University, (2018). doi:https://dx.doi.org/10.5258/SOTON/WP00645.
  • [18] F.R. Stevens, A.E. Gaughan, C. Linard, A.J. Tatem, Disaggregating census data for population mapping using Random forests with remotely-sensed and ancillary data, PLoS One. 10 (2015) 1–22. doi:10.1371/journal.pone.0107042.
  • [19] Turkish Statistical Institute (TurkStat), Population Statistics, URL: http://www.turkstat.gov.tr/UstMenu.do?metod=temelist. Date Accessed: 14.02.2019, (2019).
  • [20] M. Eisenbud, T. Gesell, Enviromental Radioactivity, 4. edition, Academic Press, 1997.
  • [21] D.A.H. Rasolonjatovo, H. Suzuki, N. Hirabayashi, T. Nunomiya, T. Nakamura, N. Nakao, Measurement for the dose-rates of the cosmic-ray components on the ground., J. Radiat. Res. 43 Suppl (2002) S27-33. doi:10.1269/jrr.43.s27.
  • [22] R. Schlickeiser, Direct Observations of Cosmic Rays, in: 2002: pp. 25–71. doi:10.1007/978-3-662-04814-6_3.
  • [23] R. Ihaka, R. Gentleman, R: A Language for Data Analysis and Graphics, J. Comput. Graph. Stat. 5 (1996) 299–314. doi:10.1080/10618600.1996.10474713.
  • [24] Quantum GIS Development Team, Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project, (2018). https://qgis.org/en/site/index.html (date accessed: 10.12.2018).
  • [25] J. Böhner, M. Bock, V. Wichmann, E. Fischer, J. Wehberg, O. Conrad, B. Bechtel, H. Dietrich, L. Gerlitz, System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev. 8 (2015) 1991–2007. doi:10.5194/gmd-8-1991-2015.
There are 25 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Cafer Mert Yeşilkanat 0000-0002-7508-7548

Publication Date September 30, 2019
Submission Date July 24, 2019
Acceptance Date August 25, 2019
Published in Issue Year 2019

Cite

APA Yeşilkanat, C. M. (2019). Determination of the annual effective dose distribution due to cosmic ray exposure of the Eastern Black Sea Region, Turkey. Cumhuriyet Science Journal, 40(3), 595-601. https://doi.org/10.17776/csj.596355