Research Article
BibTex RIS Cite

Ecotoxic Effects of Cerium Oxide Nanoparticles on Bacteria

Year 2019, , 544 - 553, 30.06.2019
https://doi.org/10.17776/csj.442819

Abstract

In this study, the ecotoxic effects of cerium
oxide nanoparticles (
CeO2 NPs) on both
gram positive Bacillus subtilis and gram negative Escherichia coli bacteria were
investigated. CeO
2 NPs were prepared in synthetic water solutions
having different water contents (low, median and high ionic strength and
conductivity, pH 5.5 and 6.5). Bacteria were exposed to CeO
2 NP
solutions in absence and presence of light conditions for 1 h. Different NP
concentrations (
10, 100, 500 and 1000 mg/L) were used,
and environmental scanning electron microscopy imaging was performed for
morphological examination of the bacteria. Results showed an aggregation of NPs
relating to both high NP concentrations and high ionic strength of the water
solutions. Regardless of the test condition, CeO
2 NPs highly
inhibited the bacterial growth.

References

  • Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B., Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart. Res., 14 (2012) 1-11.
  • Sun, C., Li, H., Chen, L., Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5 (2012) 8475-8505.
  • Collin, B., Auffan, M., Johnson, A.C., Kaur, I., Keller, A.A., Lazareva, A., Lead, J.R., Ma, X., Merrifield, R.C., Svendsen, C., White, J.C., Unrine, J.M., Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci.: Nano, 1-6 (2014) 533-548.
  • EU, Commission Staff Working Paper: Types and Uses of Nanomaterials, Including Safety Aspects, Adres: https://ec.europa.eu/health//sites/health/files/nanotechnology/docs/swd_2012_288_en.pdf, Brussels, 2012.
  • Future Markets Inc, The Global Market for Nanomaterials 2002‐2016: Production volumes, revenues and end user markets. http://www.futuremarketsinc.com/, 2012.
  • Statista, The Statistics Portal, Cerium oxide price worldwide from 2009 to 2025 (in U.S. dollars per metric ton). Adres: https://www.statista.com/statistics/450146/global-reo-cerium-oxide-price-forecast/, 2019.
  • Bleiwas, D.I., Potential for recovery of cerium contained in automotive catalytic converters, in Open‐File Report 2013-1037. U.S. Geological Survey. Adres: https://pubs.usgs.gov/of/2013/1037/OFR2013-1037.pdf, 2013.
  • Hendren, C.O., Mesnard, X., Droge, J., Wiesner, M.R., Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol., 45 (2011) 2562‐2569.
  • Jasinski, P., Suzuki, T., Anderson, H.U., Nanocrystalline undoped ceria oxygen sensor. Sensors and Actuators B: Chemical, 95 (2003) 73-77.
  • Armini, S., De Messemaeker, J., Whelan, C., Moinpour, M., Maex, K., Composite polymer core-ceria shell abrasive particles during oxide cmp: A defectivity study. J Electrochem. Society, 155 (2008) H653-H660.
  • Auffan, M., Masion, A., Labille, J., Diot, M.A., Liu, W., Olivi, L., Proux, O., Ziarelli, F., Chaurand, P., Geantet, C., Bottero, J.Y., Rose, J., Long-term aging of a CeO2 based nanocomposite used for wood protection. Environ. Pollut. 188 (2014) 1-7.
  • Mandoli, C., Pagliari, F., Pagliari, S., Forte, G., Di Nardo, P., Licoccia, S., Traversa, E., Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv. Functional Mat., 20 (2010) 1617-1624.
  • Colon, J., Herrera, L., Smith, J., Patil, S., Komanski, C., Kupelian, P., Seal, S., Jenkins, D.W., Baker, C.H., Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed.: Nanotechnol., Biol. Med., 5 (2009) 225-231.
  • Dai, Q., Wang, J., Yu, J., Chen, J., Chen, J., Catalytic ozonation for the degradation of acetylsalicylic acid in aqueous solution by magnetic CeO2 nanometer catalyst particles. Chem. Appl. Cat. B: Environ., 144 (2014) 686- 693.
  • Gottschalk, F., Sun, T.Y., Nowack, B., Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut., 181 (2013) 287-300.
  • Lazareva, A., Keller, A.A., Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustainable Chem. Eng., 2 (2014) 1656‐1665.
  • Mueller, N.C. and Nowack, B., Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol., 42 (2008) 4447-4453.
  • Gottschalk, F. and Nowack, B., The release of engineered nanomaterials to the environment. J. Environ. Monit., 13 (2011) 1145-1155.
  • Quik, J.T.K., Lynch, I., Van Hoecke, K., Miermans, C.J.H., De Schamphelaere, K.A.C., Janssen, C.R., Dawson, K.A., Stuart, M.A.C., Van de Meent, D., Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere, 81 (2010) 711-715.
  • Zhang, P., He, X., Ma, Y., Lu, K., Zhao, Y., Zhang, Z., Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model. Chemosphere, 89:5 (2012) 530-535.
  • Jabiol, J., McKie, B.G., Bruder, A., Bernadet, C., Gessner, M.O., Chauvet, E., Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. J. Anim. Ecol., 82 (2013) 1042-1051.
  • Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., Flank, A.M. , Cytotoxicity of CeO2 nanoparticles for Escherichia coli: Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol., 40 (2006) 6151‐6156.
  • Pelletier, D.A., Suresh, A.K., Holton, G.A., McKeown, C.K., Wang, W., Gu, B.H., Mortensen, N.P., Allison, D.P., Joy, D.C., Allison, M.R., Brown, S.D., Phelps, T.J., Doktycz, M.J., Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol., 76 (2010) 7981‐7989.
  • Dar, M.A., Gul, R., Alfadda, A.A., Karim, M.R., Kim, D.W., Cheung, C.L., Almajid, A.A., Alharthi, N.H., Pulakat, L., Size-dependent effect of nanoceria on their antibacterial activity towards Escherichia coli. Sci. Adv. Mat., 9:7 (2017), 1248-1253.
  • Zeyons, O., Thill, A., Chauvat, F., Menguy, N., Cassier‐Chauvat, C., Orear, C., Daraspe, J., Auffan, M., Rose, J., Spalla, O., Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology, 3 (2009) 284‐295.
  • Fang, X.H., Yu, R., Li, B.Q., Somasundaran, P., Chandran, K., Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. J. Colloid Interface Sci., 348 (2010) 329‐334.
  • Rodea‐Palomares, I., Boltes, K., Fernández‐Piñas, F., Leganés, F., García‐Calvo, E., Santiago, J., Rosal, R., Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol. Sci., 119 (2011) 135‐145.
  • Kato, M., Suzuki, M, Fujita, K, Horie, M, Endoh, S, Yoshida, Y, Iwahashi, H, Takahashi, K, Nakamura, A, Kinugasa, S,, Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol. In Vitro, 23 (2009) 927-934.
  • Kato, H., Fujita, K, Horie, M, Suzuki, M, Nakamura, A, Endoh, S, Yoshida, Y, Iwahashi, H, Takahashi, K, Kinugasa, S., Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment. Toxicol. In Vitro, 24 (2010) 1009-1018.
  • Kosyan D.B., Y.E.V., Vasilchenko A.S., Vasilchenko A.V., Miroshnikov S.A., Toxicity of SiO2, TiO2 and CeO2 nanoparticles evaluated using the bioluminescence assay. Int. J. Geomate, 13-40 (2017), 66-73.
  • Leung, Y.H., Yung, M.M.N., Ng, A.M.C., Mab, A.P.Y., Wong, S.W.Y., Chan, C.M.N., Ng, Y.H., Djurisic, A.B., Guo, M., Wong, M.T., Leung, F.C.C., Chan, W.K., Leung, K.M.Y., Lee, H.K., Toxicity of CeO2 nanoparticles – The effect of nanoparticle properties. J. Photochem. Photobiol. B: Biology, 145 (2015) 48-59.
  • Baalousha, M., Ju-Nam, Y., Cole, P.A., Gaiser, B., Fernandes, T.F., Hriljac, J.A., Jepson, M.A., Stone, V., Tyler, C.R., Lead, J.R., Characterization of cerium oxide nanoparticles-part 1: size measurements. Environ. Toxicol. Chem., 31-5 (2012), 983-993.
  • Baalousha, M., Ju‐Nam, Y., Cole, P.A., Hriljac, J.A., Jones, I.P., Tyler, C.R., Stone, V., Fernandes, T.F., Jepson, M.A., Lead, J.R., Characterization of cerium oxide nanoparticles. Part 2: Nonsize measurements. Environ. Toxicol. Chem., 31-5 (2012) 994‐1003.
  • Buettner, K.M., Rinciog, C.I., Mylon, S.E., Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloid. Surface. A, 366 (2010) 74‐79.
  • Berg, J.M., Romoser, A., Banerjee, N., Zebda, R., Sayes, C.M., The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology, 3-4 (2009), 276-283.
  • Al-Shawafi, W.M., Salah, N., Alshahrie, A., Ahmed, Y.M., Moselhy, S.S., Hammad, A.H., Hussain, M.A., Memic, A., Size controlled ultrafine CeO2 nanoparticles produced by the microwave assisted route and their antimicrobial activity. J Mater Sci: Mater Med, 28-177 (2017), 1-10.
  • Krishnamoorthy, K., Veerapandian, M., Zhang, L.H., Yun, K., Kim, S.J., Surface chemistry of cerium oxide nanocubes: Toxicity against pathogenic bacteria and their mechanistic study. J Ind Eng Chem, 20-5 (2014), 3513-3517.
  • Collin, B., Oostveen, E., Tsyusko, O.V., Unrine, J.M., Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol, 48-2 (2014), 1280.
  • Agarwal, C., Aggrawal, S., Dutt, D., Mohanty, P., Cerium oxide immobilized paper matrices for bactericidal application. Materials Science and Engineering: B, 232-235 (2018) 1-7.
  • He, X., Kuang, Y., Li, Y., Zhang, H., Ma, Y., Bai, W., Zhang, Z., Wu, Z., Zhao, Y., Chai, Z., Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for Escherichia coli. Nanotoxicology, 6 (2012) 233-240.

Seryum Oksit Nanopartiküllerinin Bakteriler Üzerindeki Ekotoksik Etkileri

Year 2019, , 544 - 553, 30.06.2019
https://doi.org/10.17776/csj.442819

Abstract

Bu çalışmada, seryumoksit nanopartiküllerinin (CeO2 NP) gram
pozitif
Bacillus subtilis ve gram
negatif
Escherichia coli bakterileri üzerindeki
ekotoksik etkileri incelenmiştir. CeO
2 NPleri farklı içeriğe sahip
(düşük, orta ve yüksek iyonik güç ve iletkenlik, pH 5,5 ve 6,5) sentetik su çözeltileri
içinde hazırlanmıştır. Bakteriler ışıklı ve ışıksız ortamlarda CeO
2
NPlerine 1 saat süreyle maruz bırakılmıştır. Farklı NP konsantrasyonları (10,
100, 500 and 1000 mg/L) kullanılmış ve çevresel taramalı electron mikroskopi görüntüleme
ile bakterilerin morfolojik incelemesi yapılmıştır. Sonuçlar yüksek NP
konsantrasyonu ve yüksek iyonik güce bağlı olarak NPlerin agregasyona uğradığını
göstermiştir. Test koşullarından bağımsız olarak CeO
2 NPleri bakteriyel
büyümeyi yüksek oranda inhibe etmiştir.

References

  • Piccinno, F., Gottschalk, F., Seeger, S., Nowack, B., Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart. Res., 14 (2012) 1-11.
  • Sun, C., Li, H., Chen, L., Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5 (2012) 8475-8505.
  • Collin, B., Auffan, M., Johnson, A.C., Kaur, I., Keller, A.A., Lazareva, A., Lead, J.R., Ma, X., Merrifield, R.C., Svendsen, C., White, J.C., Unrine, J.M., Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environ. Sci.: Nano, 1-6 (2014) 533-548.
  • EU, Commission Staff Working Paper: Types and Uses of Nanomaterials, Including Safety Aspects, Adres: https://ec.europa.eu/health//sites/health/files/nanotechnology/docs/swd_2012_288_en.pdf, Brussels, 2012.
  • Future Markets Inc, The Global Market for Nanomaterials 2002‐2016: Production volumes, revenues and end user markets. http://www.futuremarketsinc.com/, 2012.
  • Statista, The Statistics Portal, Cerium oxide price worldwide from 2009 to 2025 (in U.S. dollars per metric ton). Adres: https://www.statista.com/statistics/450146/global-reo-cerium-oxide-price-forecast/, 2019.
  • Bleiwas, D.I., Potential for recovery of cerium contained in automotive catalytic converters, in Open‐File Report 2013-1037. U.S. Geological Survey. Adres: https://pubs.usgs.gov/of/2013/1037/OFR2013-1037.pdf, 2013.
  • Hendren, C.O., Mesnard, X., Droge, J., Wiesner, M.R., Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol., 45 (2011) 2562‐2569.
  • Jasinski, P., Suzuki, T., Anderson, H.U., Nanocrystalline undoped ceria oxygen sensor. Sensors and Actuators B: Chemical, 95 (2003) 73-77.
  • Armini, S., De Messemaeker, J., Whelan, C., Moinpour, M., Maex, K., Composite polymer core-ceria shell abrasive particles during oxide cmp: A defectivity study. J Electrochem. Society, 155 (2008) H653-H660.
  • Auffan, M., Masion, A., Labille, J., Diot, M.A., Liu, W., Olivi, L., Proux, O., Ziarelli, F., Chaurand, P., Geantet, C., Bottero, J.Y., Rose, J., Long-term aging of a CeO2 based nanocomposite used for wood protection. Environ. Pollut. 188 (2014) 1-7.
  • Mandoli, C., Pagliari, F., Pagliari, S., Forte, G., Di Nardo, P., Licoccia, S., Traversa, E., Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv. Functional Mat., 20 (2010) 1617-1624.
  • Colon, J., Herrera, L., Smith, J., Patil, S., Komanski, C., Kupelian, P., Seal, S., Jenkins, D.W., Baker, C.H., Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed.: Nanotechnol., Biol. Med., 5 (2009) 225-231.
  • Dai, Q., Wang, J., Yu, J., Chen, J., Chen, J., Catalytic ozonation for the degradation of acetylsalicylic acid in aqueous solution by magnetic CeO2 nanometer catalyst particles. Chem. Appl. Cat. B: Environ., 144 (2014) 686- 693.
  • Gottschalk, F., Sun, T.Y., Nowack, B., Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environ. Pollut., 181 (2013) 287-300.
  • Lazareva, A., Keller, A.A., Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants. ACS Sustainable Chem. Eng., 2 (2014) 1656‐1665.
  • Mueller, N.C. and Nowack, B., Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol., 42 (2008) 4447-4453.
  • Gottschalk, F. and Nowack, B., The release of engineered nanomaterials to the environment. J. Environ. Monit., 13 (2011) 1145-1155.
  • Quik, J.T.K., Lynch, I., Van Hoecke, K., Miermans, C.J.H., De Schamphelaere, K.A.C., Janssen, C.R., Dawson, K.A., Stuart, M.A.C., Van de Meent, D., Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere, 81 (2010) 711-715.
  • Zhang, P., He, X., Ma, Y., Lu, K., Zhao, Y., Zhang, Z., Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model. Chemosphere, 89:5 (2012) 530-535.
  • Jabiol, J., McKie, B.G., Bruder, A., Bernadet, C., Gessner, M.O., Chauvet, E., Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. J. Anim. Ecol., 82 (2013) 1042-1051.
  • Thill, A., Zeyons, O., Spalla, O., Chauvat, F., Rose, J., Auffan, M., Flank, A.M. , Cytotoxicity of CeO2 nanoparticles for Escherichia coli: Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol., 40 (2006) 6151‐6156.
  • Pelletier, D.A., Suresh, A.K., Holton, G.A., McKeown, C.K., Wang, W., Gu, B.H., Mortensen, N.P., Allison, D.P., Joy, D.C., Allison, M.R., Brown, S.D., Phelps, T.J., Doktycz, M.J., Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol., 76 (2010) 7981‐7989.
  • Dar, M.A., Gul, R., Alfadda, A.A., Karim, M.R., Kim, D.W., Cheung, C.L., Almajid, A.A., Alharthi, N.H., Pulakat, L., Size-dependent effect of nanoceria on their antibacterial activity towards Escherichia coli. Sci. Adv. Mat., 9:7 (2017), 1248-1253.
  • Zeyons, O., Thill, A., Chauvat, F., Menguy, N., Cassier‐Chauvat, C., Orear, C., Daraspe, J., Auffan, M., Rose, J., Spalla, O., Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology, 3 (2009) 284‐295.
  • Fang, X.H., Yu, R., Li, B.Q., Somasundaran, P., Chandran, K., Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. J. Colloid Interface Sci., 348 (2010) 329‐334.
  • Rodea‐Palomares, I., Boltes, K., Fernández‐Piñas, F., Leganés, F., García‐Calvo, E., Santiago, J., Rosal, R., Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol. Sci., 119 (2011) 135‐145.
  • Kato, M., Suzuki, M, Fujita, K, Horie, M, Endoh, S, Yoshida, Y, Iwahashi, H, Takahashi, K, Nakamura, A, Kinugasa, S,, Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol. In Vitro, 23 (2009) 927-934.
  • Kato, H., Fujita, K, Horie, M, Suzuki, M, Nakamura, A, Endoh, S, Yoshida, Y, Iwahashi, H, Takahashi, K, Kinugasa, S., Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment. Toxicol. In Vitro, 24 (2010) 1009-1018.
  • Kosyan D.B., Y.E.V., Vasilchenko A.S., Vasilchenko A.V., Miroshnikov S.A., Toxicity of SiO2, TiO2 and CeO2 nanoparticles evaluated using the bioluminescence assay. Int. J. Geomate, 13-40 (2017), 66-73.
  • Leung, Y.H., Yung, M.M.N., Ng, A.M.C., Mab, A.P.Y., Wong, S.W.Y., Chan, C.M.N., Ng, Y.H., Djurisic, A.B., Guo, M., Wong, M.T., Leung, F.C.C., Chan, W.K., Leung, K.M.Y., Lee, H.K., Toxicity of CeO2 nanoparticles – The effect of nanoparticle properties. J. Photochem. Photobiol. B: Biology, 145 (2015) 48-59.
  • Baalousha, M., Ju-Nam, Y., Cole, P.A., Gaiser, B., Fernandes, T.F., Hriljac, J.A., Jepson, M.A., Stone, V., Tyler, C.R., Lead, J.R., Characterization of cerium oxide nanoparticles-part 1: size measurements. Environ. Toxicol. Chem., 31-5 (2012), 983-993.
  • Baalousha, M., Ju‐Nam, Y., Cole, P.A., Hriljac, J.A., Jones, I.P., Tyler, C.R., Stone, V., Fernandes, T.F., Jepson, M.A., Lead, J.R., Characterization of cerium oxide nanoparticles. Part 2: Nonsize measurements. Environ. Toxicol. Chem., 31-5 (2012) 994‐1003.
  • Buettner, K.M., Rinciog, C.I., Mylon, S.E., Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloid. Surface. A, 366 (2010) 74‐79.
  • Berg, J.M., Romoser, A., Banerjee, N., Zebda, R., Sayes, C.M., The relationship between pH and zeta potential of ∼ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology, 3-4 (2009), 276-283.
  • Al-Shawafi, W.M., Salah, N., Alshahrie, A., Ahmed, Y.M., Moselhy, S.S., Hammad, A.H., Hussain, M.A., Memic, A., Size controlled ultrafine CeO2 nanoparticles produced by the microwave assisted route and their antimicrobial activity. J Mater Sci: Mater Med, 28-177 (2017), 1-10.
  • Krishnamoorthy, K., Veerapandian, M., Zhang, L.H., Yun, K., Kim, S.J., Surface chemistry of cerium oxide nanocubes: Toxicity against pathogenic bacteria and their mechanistic study. J Ind Eng Chem, 20-5 (2014), 3513-3517.
  • Collin, B., Oostveen, E., Tsyusko, O.V., Unrine, J.M., Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ Sci Technol, 48-2 (2014), 1280.
  • Agarwal, C., Aggrawal, S., Dutt, D., Mohanty, P., Cerium oxide immobilized paper matrices for bactericidal application. Materials Science and Engineering: B, 232-235 (2018) 1-7.
  • He, X., Kuang, Y., Li, Y., Zhang, H., Ma, Y., Bai, W., Zhang, Z., Wu, Z., Zhao, Y., Chai, Z., Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for Escherichia coli. Nanotoxicology, 6 (2012) 233-240.
There are 40 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Merve Özkaleli Akçetin 0000-0001-5593-7966

Ayça Erdem 0000-0003-3296-1247

Publication Date June 30, 2019
Submission Date July 11, 2018
Acceptance Date February 19, 2019
Published in Issue Year 2019

Cite

APA Özkaleli Akçetin, M., & Erdem, A. (2019). Ecotoxic Effects of Cerium Oxide Nanoparticles on Bacteria. Cumhuriyet Science Journal, 40(2), 544-553. https://doi.org/10.17776/csj.442819