5.96 keV Enerjide Hg, Pb and Bi Elementlerine ait Bileşiklerin Ortalama M Kabuğu Floresans Verimlerinin Araştırılması ve 70Yb ile 92U Arasındaki Elementlerin Ortalama M Kabuğu Floresans Verimlerinin Deneysel Olarak Hesaplanması
Year 2018,
, 745 - 755, 30.09.2018
Nuray Küp Aylıkcı
,
Abdelhalim Kahoul
Volkan Aylıkcı
Engin Tıraşoğlu
Abstract
Çalışmada 70Yb elementinden 92U
elementine kadar olan saf elementler için ortalama M kabuğu floresans verimleri
deneysel olarak hesaplanmıştır. Elde edilen veriler, teorik atomik yapı
hesaplamaları için ve malzeme karakterizasyonunda kullanılan spektroskopik
yöntemler için daha çok veri sağlayacaktır.
Ve ayrıca, M kabuğuna ait ortalama floresans verimler Hg, Pb ve Bi
elementleri içeren bileşikler için 5.96 keV’de M kabuğu X-ışını üretim tesir
kesitleri kullanılarak hesaplanmıştır. Bileşikler 1.85 GBq 55Fe
radyoaktif kaynağı ile uyarılmıştır. Uyarılmış numuneden yayınlanan M kabuğuna
ait X-ışını fotonları Ultra LEGe dedektörü ile sayılmıştır. Kimyasallardaki
elementlerden elde edilen veriler literatürde yer alan ve çalışmada deneysel olarak hesaplanan değerlerle
karşılaştırılmıştır.
References
- [1]. Brunner G., Nagel M., Hartmann E. and Arndt E., Chemical Sensitivity of the Kβ /Kα X-Ray Intensity Ratio for 3d Elements, J. Phys. B: At. Mol. Phys., 15-24 (1982) 4517–4522.
- [2]. Arndt E., Brunner G. and Hartmann E., Kβ /Kα Intensity Ratios for X-Ray Production in 3d Elements by Photoionisation and Electron Capture, J. Phys. B: At. Mol. Phys., 15-24 (1982) 887–889.
- [3]. Mukoyama T., Kaji H., Taniguchi K. and Adachi H., Theoretical Estimation of the Chemical Effect on K X-Ray Intensity Ratios for 4d Elements, X-Ray Spectrom., 26-5 (1997) 269–271.
- [4]. Sawhney K. J. S., Lodha G. S., Kataria S. K. and Kulshrestha S. K., Chemical Effects in X‐Ray Fluorescence by Study of Fe, Pt And U Compounds, X-Ray Spectrom., 29-2 (2000) 173–177.
- [5]. Büyükkasap E., Chemical Effect on L X-Ray Fluorescence Cross-Sections of Hg, Pb and Bi Compounds, Spectrohim. Acta B, 52-8 (1997) 1167.
- [6]. Baydaş E., Söğüt Ö., Şahin Y. and Büyükkasap E., Chemical effects on L X-ray Fluorescence Cross-Sections of Ba, La, and Ce Compounds, Radiat. Phys. Chem., 54-3 (1999) 217–221.
- [7]. Mukoyama T., Taniguchi K. and Adachi H., Variation of Kβ/Kα X-Ray Intensity Ratios in 3d Elements, X-Ray Spectrom., 29-6 (2000) 426–429.
- [8]. Tıraşoğlu E., Çevik U., Ertuğral B., Apaydın G., Ertuğrul M. and Kobya A. İ., Chemical Effects on Lα, Lβ, Lγ, Ll, and Lη X-Ray Production Cross-Sections and Li/Lα X-Ray Intensity Ratios of Hg, Pb and Bi Compounds at 59.54 keV, Eur. Phys. J. D, 26-3 (2003) 231–236.
- [9]. Tıraşoğlu E., and Tekbıyık A., Influence of chemical effect on the Kβ/Kα X-ray intensity ratios for calcium and potassium compounds, Spectrochim. Acta B, 60-4 (2005) 549–553.
- [10]. Çevik U., Değirmencioğlu İ., Ertuğral B., Apaydın G. and Baltaş H., Chemical Effects on the Kβ/Kα X-Ray Intensity Ratios of Mn, Ni And Cu Complexes, Eur. Phys. J. D, 36-1 (2005) 29–32.
- [11]. Kulshreshtha S. K., Wagh D. N. and Bajpei H. N., Chemical Effects on X‐Ray Fluorescence Yield of Ag+ Compounds, X-Ray Spectrom., 34-3 (2005) 200–202.
- [12]. Aylıkcı V., Apaydın G., Tıraşoğlu E., Kaya N. and Cengiz E., Chemical Effect on The L X-Ray Cross-Sections and Average Fluorescence Yields of Hf Compounds, Chem. Phys., 332(2–3) (2007) 348–352.
- [13]. Gowda R. and Powers D., M-Shell X-Ray Production Cross Sections in Thick Targets of Ir, Pt, And Pb By 0.4–2.2-MeV 4He+ Ions, Phys. Rev. A, 31-1 (1985) 134–141.
- [14]. Pajek M., Kobzev A.B., Sandrik S., Skrpnik A.V., Ilkhamov R.A., Khusmurodov S.H. and Lapicki G., M-Shell X-Ray Production by 0.6–4.0-MeV Protons in Ten Elements from Hafnium to Thorium, Phys. Rev. A, 42-1 (1990) 261–272.
- [15]. Braich J.S., Verma P. and Verma H.R., M-Shell X-Ray Production Cross Section Measurements in Pb and Bi Due to The Impact of Protons And Nickel Ions J. Phys. B: At. Mol. Opt. Phys., 30-10 (1997) 2359–2373.
- [16]. Amirabadi A., Afarideh H., Haji-Saeid S.M., Shokouhi F. and Peyrovan H., L Subshell and Total M Shell X-Ray Production Cross Sections of Hg for Protons of Energy 0.7-2.9 MeV, J. Phys. B: At. Mol. Opt. Phys., 30-4 (1997) 863–872.
- [17]. Singh Y. and Tribedi L.C., M-Subshell X-Ray Production Cross Sections of Au Induced by Highly Charged F, C, and Li Ions and Protons: A Large Enhancement in the M3 Fluorescence Yield, Phys. Rev. A, 66-6 (2002) 062709(1–7).
- [18]. Singh Y. and Tribedi L.C., M-Shell X-Ray Production Cross Sections of Bi Induced by Highly Charged F Ions, Nucl. Instrum. Methods B, 205(1–4) (2003) 794–798.
- [19]. Shatendra K., Singh N., Mittal R., Allawadhi K.L. and Sood B.S., Measurement of L and M Shell X‐Ray Production Cross‐Sections by 6 keV Photon, X-Ray Spectrom. 14-4 (1985) 195–198.
- [20]. Garg R.R., Singh S., Shahi J.S., Metha D., Singh N., Trehan P.N., Kumar S., Garg M.L. and Mangal P.C., Measurement of M‐shell x‐ray production cross‐sections using 5.96‐keV photons, X-ray Spectrom. 20-2 (1991) 91–95.
- [21]. Jopson R.C., Mark H., Swift C.D. and Williamson M.A., Phys. Rev., M-Shell Fluorescence Yields of Bismuth, Lead, Gold, and Osmium, 137-5A (1965) 1353–1357.
- [22]. Deutsch M., Gang O., Hölzer G., Härtwig J., Wolf J., Fritsch M. and Förster E., L2,3 and M2,3 Level Widths and Fluorescence Yields of Copper, Phys. Rev. A, 52-5 (1995) 3661–3668.
- [23]. Rao D.V., Cesareo R. and Gigante G.E., Average M-Shell Fluorescence Yields for Pt, Au and Pb, Radiat. Phys. Chem., 49-4 (1997) 503–504.
- [24]. Apaydın G., Tıraşoğlu E., Çevik U., Ertuğral B., Baltaş H., Ertuğrul M. and Kobya A.İ., Total M shell X-ray Production Cross Sections and Average Fluorescence Yields in 11 Elements from Tm to U at Photon Energy of 5.96 keV, Radiat. Phys. Chem., 72-5 (2005) 549–554.
- [25]. Tıraşoğlu E., Average Fluorescence Yields of M-4,M-5 Subshells for Thorium and Uranium, Eur. Phys. J. D, 37-2 (2006) 177–180.
- [26]. Deghfel B., Nekkab M., and Kahoul A., M X‐Ray Production Cross Sections for Heavy Elements by Proton Impact, X-Ray Spectrom. 38-5 (2009) 399–405.
- [27]. Aylikci V., Cengiz E., Apaydin G., Ünver Y., Sancak K. and Tıraşoğlu E., Influence of Functional Group Effect on the K-Shell X-Ray Production Cross-Sections and Average Fluorescence Yields of Sulphur in 1,2,4-Triazol-5-One Compounds Containing Thiophene, Chem. Phys. Lett. 461(4–6) (2008) 332–337.
- [28]. Haynes W.M., Handbook of Chemistry and Physics. In: Haynes W.M., Lide D.R. and Bruno T.J. (Eds). Section 12. Properties of Solids. 95th ed. United States: CRC Press- Taylor & Francis Group, 2014; pp 12–15.
- [29]. Berger M.J. and Hubbell J.H., XCOM: Photon cross-sections on a personel computer (version 1.2), NBSIR85-3597, National Bureau of Standarts, Gaithersburg, MD, USA, for version 3.1, 1999, see http://physics.nist.gov/.
- [30]. Storm E. and Israel I., Photon Cross Sections from 1 keV to100 MeV for Elements Z=1 to Z=100, Nucl. Data Tables, A7 (1970) 565–681.
- [31]. Scofield, J.H. Theoretical Photoionization Cross Sections from 1 to 1500 keV. United States. doi:10.2172/4545040.
- [32]. Söğüt Ö., Büyükkasap E., Küçükönder A., Ertuğrul M., Doğan O., Erdoğan H. and Şimşek Ö., Fit Values of M Subshell Fluorescence Yields and Coster–Kronig Transitions for Elements with 20 ≤ Z ≤ 90, X-ray Spectrom., 31-1(2002) 62–70.
- [33]. Bhalla C.P., Radiative transition probabilities for vacancies in M sub-shells, J. Phys. B: At. Mol. Opt. Phys., 3-7 (1970) 916–924.
- [34]. Hubbell J.H., Trehan P.N., Singh N., Chand B., Mehta D., Garg M.L., Garg R.R., Singh S. and Puri S., A Review, Bibliography, and Tabulation of K, L, and Higher Atomic Shell X‐Ray Fluorescence Yields, J. Phys. Chem. Ref. Data, 23-2 (1994) 339–364.
- [35]. Ertuğrul M., Tiraşoğlu E., Kurucu Y., Erzeneoğlu S., Durak R. and Şahin Y., Measurement of M Shell X-Ray Production Cross Sections and Fluorescence Yields for the Elements in the Atomic Range 70≤Z≤92 at 5.96 keV, Nucl. Instr. Meth. B, 108(1–2) (1996) 18–22.
- [36]. Durak R. and Özdemir Y., Photon-Induced M-Shell X-Ray Production Cross-Sections and Fluorescence Yields In Heavy Elements at 5.96 keV, Spectrochim. Acta Part B, 56-4 (2001) 455–464.
- [37]. Puri S., Mehta D., Chand B., Singh N., Mandal P.C. and Trehan P.N., M Shell X-Ray Production Cross-Sections and Fluorescence Yields for the Elements with 71≤Z≤92 Using 5.96 keV Photons, Nucl. Instr. Meth. B, 73-3 (1993) 319–323.
- [38]. Pajek M., Kobzev A.P., Sandrik R., Skrypnik A.V., Ilkhamov R.A., Khuamurodov S.H. and Lapicki G., M-shell X-Ray Production by 0.8–4.0 MeV 4He+ Ions in Ten Elements from Hafnium to Thorium, Phys. Rev. A, 42- (1990) 5298–5304.
- [39]. Konstantinov A.A. and Sazonova T.E., Determination of the M-Shell Fluorescence Coefficients of Gold, Lead and Bismuth, Bull. Acad. USSR, Phys. Ser., 32 (1969) 581.
- [40]. Shatendra K., Allowadhi K.L. and Sood B.S., Measurement of Average M-Shell Fluorescence Yields in Some High Z Elements, Physica B&C, 124-2 (1984) 279–281.
- [41]. Mann K.S., Singh N., Mittal R., Allawadhi K.L. and Sood B.S., M-Shell X-Ray Production Cross Sections in Au, Pb, Th and U by 6-12 keV Photons J. Phys. B: At. Mol. Opt. Phys., 23-15 (1990) 2497–2504.
- [42]. Hribar M., Kodre A. and Pahor J., A Study of The M-Shell Fluorescence Yıelds of Lead, Physica B&C, 115-1 (1982) 132–136.
- [43]. Jaffe A.A., The M X-ray from Radium D and the M X-ray Fluorescence Yield of Bismuth, Phys. Abstr., 58 (1955) 360.
- [44]. McGuire E.J., Atomic M-Shell Coster-Kronig, Auger, and Radiative Rates, and Fluorescence Yields for Ca-Th, Phys. Rev. A, 5-3 (1972) 1043–1047.
- [45]. Chen M.H., Crasemann B. and Mark H., Relativistic M-shell Radiationless Transitions, Phys. Rev. A, 21-2 (1980) 449–453.
- [46]. Chen M.H., Crasemann B. and Mark H., Radiationless Transitions to Atomic M1,2,3 shells: Results of Relativistic Theory, Phys. Rev. A, 27-6 (1983) 2989–2994.
- [47]. Hubbell, J.H., Bibliography and Current Status of K, L and Higher Shell Fluorescence Yields for Computation Photon Energy- Absorption Coefficients, NIST, Center of Radiation Research, NISTIR 89-4144, Gaithersburg, (1989).
The Determination of M Shell Average Fluorescence Parameters From 70Yb to 92U and of Hg, Pb and Bi Compounds Using 5.96 keV Photons
Year 2018,
, 745 - 755, 30.09.2018
Nuray Küp Aylıkcı
,
Abdelhalim Kahoul
Volkan Aylıkcı
Engin Tıraşoğlu
Abstract
In this study, the empirical average M
shell fluorescence yields were calculated from 70Yb to 92U.
These obtained values will supply more experimental data for theoretical
estimations of atomic structure calculations and spectroscopic analysis which
is used for material characterization.
And also, chemical effects on average M-shell fluorescence yields for Hg, Pb, and Bi compounds were
determined using M X-ray production
cross-sections at 5.96 keV photon energy. The samples were irradiated using a
1.85 GBq 55Fe radioactive source.
M X-rays emitted by samples
were counted using a multi-channel analyzer with a Ultra-LEGe detector. The
measured experimental values have been compared with theoretically and
empirically (only for M-shell average fluorescence yields) calculated values of
pure elements.
References
- [1]. Brunner G., Nagel M., Hartmann E. and Arndt E., Chemical Sensitivity of the Kβ /Kα X-Ray Intensity Ratio for 3d Elements, J. Phys. B: At. Mol. Phys., 15-24 (1982) 4517–4522.
- [2]. Arndt E., Brunner G. and Hartmann E., Kβ /Kα Intensity Ratios for X-Ray Production in 3d Elements by Photoionisation and Electron Capture, J. Phys. B: At. Mol. Phys., 15-24 (1982) 887–889.
- [3]. Mukoyama T., Kaji H., Taniguchi K. and Adachi H., Theoretical Estimation of the Chemical Effect on K X-Ray Intensity Ratios for 4d Elements, X-Ray Spectrom., 26-5 (1997) 269–271.
- [4]. Sawhney K. J. S., Lodha G. S., Kataria S. K. and Kulshrestha S. K., Chemical Effects in X‐Ray Fluorescence by Study of Fe, Pt And U Compounds, X-Ray Spectrom., 29-2 (2000) 173–177.
- [5]. Büyükkasap E., Chemical Effect on L X-Ray Fluorescence Cross-Sections of Hg, Pb and Bi Compounds, Spectrohim. Acta B, 52-8 (1997) 1167.
- [6]. Baydaş E., Söğüt Ö., Şahin Y. and Büyükkasap E., Chemical effects on L X-ray Fluorescence Cross-Sections of Ba, La, and Ce Compounds, Radiat. Phys. Chem., 54-3 (1999) 217–221.
- [7]. Mukoyama T., Taniguchi K. and Adachi H., Variation of Kβ/Kα X-Ray Intensity Ratios in 3d Elements, X-Ray Spectrom., 29-6 (2000) 426–429.
- [8]. Tıraşoğlu E., Çevik U., Ertuğral B., Apaydın G., Ertuğrul M. and Kobya A. İ., Chemical Effects on Lα, Lβ, Lγ, Ll, and Lη X-Ray Production Cross-Sections and Li/Lα X-Ray Intensity Ratios of Hg, Pb and Bi Compounds at 59.54 keV, Eur. Phys. J. D, 26-3 (2003) 231–236.
- [9]. Tıraşoğlu E., and Tekbıyık A., Influence of chemical effect on the Kβ/Kα X-ray intensity ratios for calcium and potassium compounds, Spectrochim. Acta B, 60-4 (2005) 549–553.
- [10]. Çevik U., Değirmencioğlu İ., Ertuğral B., Apaydın G. and Baltaş H., Chemical Effects on the Kβ/Kα X-Ray Intensity Ratios of Mn, Ni And Cu Complexes, Eur. Phys. J. D, 36-1 (2005) 29–32.
- [11]. Kulshreshtha S. K., Wagh D. N. and Bajpei H. N., Chemical Effects on X‐Ray Fluorescence Yield of Ag+ Compounds, X-Ray Spectrom., 34-3 (2005) 200–202.
- [12]. Aylıkcı V., Apaydın G., Tıraşoğlu E., Kaya N. and Cengiz E., Chemical Effect on The L X-Ray Cross-Sections and Average Fluorescence Yields of Hf Compounds, Chem. Phys., 332(2–3) (2007) 348–352.
- [13]. Gowda R. and Powers D., M-Shell X-Ray Production Cross Sections in Thick Targets of Ir, Pt, And Pb By 0.4–2.2-MeV 4He+ Ions, Phys. Rev. A, 31-1 (1985) 134–141.
- [14]. Pajek M., Kobzev A.B., Sandrik S., Skrpnik A.V., Ilkhamov R.A., Khusmurodov S.H. and Lapicki G., M-Shell X-Ray Production by 0.6–4.0-MeV Protons in Ten Elements from Hafnium to Thorium, Phys. Rev. A, 42-1 (1990) 261–272.
- [15]. Braich J.S., Verma P. and Verma H.R., M-Shell X-Ray Production Cross Section Measurements in Pb and Bi Due to The Impact of Protons And Nickel Ions J. Phys. B: At. Mol. Opt. Phys., 30-10 (1997) 2359–2373.
- [16]. Amirabadi A., Afarideh H., Haji-Saeid S.M., Shokouhi F. and Peyrovan H., L Subshell and Total M Shell X-Ray Production Cross Sections of Hg for Protons of Energy 0.7-2.9 MeV, J. Phys. B: At. Mol. Opt. Phys., 30-4 (1997) 863–872.
- [17]. Singh Y. and Tribedi L.C., M-Subshell X-Ray Production Cross Sections of Au Induced by Highly Charged F, C, and Li Ions and Protons: A Large Enhancement in the M3 Fluorescence Yield, Phys. Rev. A, 66-6 (2002) 062709(1–7).
- [18]. Singh Y. and Tribedi L.C., M-Shell X-Ray Production Cross Sections of Bi Induced by Highly Charged F Ions, Nucl. Instrum. Methods B, 205(1–4) (2003) 794–798.
- [19]. Shatendra K., Singh N., Mittal R., Allawadhi K.L. and Sood B.S., Measurement of L and M Shell X‐Ray Production Cross‐Sections by 6 keV Photon, X-Ray Spectrom. 14-4 (1985) 195–198.
- [20]. Garg R.R., Singh S., Shahi J.S., Metha D., Singh N., Trehan P.N., Kumar S., Garg M.L. and Mangal P.C., Measurement of M‐shell x‐ray production cross‐sections using 5.96‐keV photons, X-ray Spectrom. 20-2 (1991) 91–95.
- [21]. Jopson R.C., Mark H., Swift C.D. and Williamson M.A., Phys. Rev., M-Shell Fluorescence Yields of Bismuth, Lead, Gold, and Osmium, 137-5A (1965) 1353–1357.
- [22]. Deutsch M., Gang O., Hölzer G., Härtwig J., Wolf J., Fritsch M. and Förster E., L2,3 and M2,3 Level Widths and Fluorescence Yields of Copper, Phys. Rev. A, 52-5 (1995) 3661–3668.
- [23]. Rao D.V., Cesareo R. and Gigante G.E., Average M-Shell Fluorescence Yields for Pt, Au and Pb, Radiat. Phys. Chem., 49-4 (1997) 503–504.
- [24]. Apaydın G., Tıraşoğlu E., Çevik U., Ertuğral B., Baltaş H., Ertuğrul M. and Kobya A.İ., Total M shell X-ray Production Cross Sections and Average Fluorescence Yields in 11 Elements from Tm to U at Photon Energy of 5.96 keV, Radiat. Phys. Chem., 72-5 (2005) 549–554.
- [25]. Tıraşoğlu E., Average Fluorescence Yields of M-4,M-5 Subshells for Thorium and Uranium, Eur. Phys. J. D, 37-2 (2006) 177–180.
- [26]. Deghfel B., Nekkab M., and Kahoul A., M X‐Ray Production Cross Sections for Heavy Elements by Proton Impact, X-Ray Spectrom. 38-5 (2009) 399–405.
- [27]. Aylikci V., Cengiz E., Apaydin G., Ünver Y., Sancak K. and Tıraşoğlu E., Influence of Functional Group Effect on the K-Shell X-Ray Production Cross-Sections and Average Fluorescence Yields of Sulphur in 1,2,4-Triazol-5-One Compounds Containing Thiophene, Chem. Phys. Lett. 461(4–6) (2008) 332–337.
- [28]. Haynes W.M., Handbook of Chemistry and Physics. In: Haynes W.M., Lide D.R. and Bruno T.J. (Eds). Section 12. Properties of Solids. 95th ed. United States: CRC Press- Taylor & Francis Group, 2014; pp 12–15.
- [29]. Berger M.J. and Hubbell J.H., XCOM: Photon cross-sections on a personel computer (version 1.2), NBSIR85-3597, National Bureau of Standarts, Gaithersburg, MD, USA, for version 3.1, 1999, see http://physics.nist.gov/.
- [30]. Storm E. and Israel I., Photon Cross Sections from 1 keV to100 MeV for Elements Z=1 to Z=100, Nucl. Data Tables, A7 (1970) 565–681.
- [31]. Scofield, J.H. Theoretical Photoionization Cross Sections from 1 to 1500 keV. United States. doi:10.2172/4545040.
- [32]. Söğüt Ö., Büyükkasap E., Küçükönder A., Ertuğrul M., Doğan O., Erdoğan H. and Şimşek Ö., Fit Values of M Subshell Fluorescence Yields and Coster–Kronig Transitions for Elements with 20 ≤ Z ≤ 90, X-ray Spectrom., 31-1(2002) 62–70.
- [33]. Bhalla C.P., Radiative transition probabilities for vacancies in M sub-shells, J. Phys. B: At. Mol. Opt. Phys., 3-7 (1970) 916–924.
- [34]. Hubbell J.H., Trehan P.N., Singh N., Chand B., Mehta D., Garg M.L., Garg R.R., Singh S. and Puri S., A Review, Bibliography, and Tabulation of K, L, and Higher Atomic Shell X‐Ray Fluorescence Yields, J. Phys. Chem. Ref. Data, 23-2 (1994) 339–364.
- [35]. Ertuğrul M., Tiraşoğlu E., Kurucu Y., Erzeneoğlu S., Durak R. and Şahin Y., Measurement of M Shell X-Ray Production Cross Sections and Fluorescence Yields for the Elements in the Atomic Range 70≤Z≤92 at 5.96 keV, Nucl. Instr. Meth. B, 108(1–2) (1996) 18–22.
- [36]. Durak R. and Özdemir Y., Photon-Induced M-Shell X-Ray Production Cross-Sections and Fluorescence Yields In Heavy Elements at 5.96 keV, Spectrochim. Acta Part B, 56-4 (2001) 455–464.
- [37]. Puri S., Mehta D., Chand B., Singh N., Mandal P.C. and Trehan P.N., M Shell X-Ray Production Cross-Sections and Fluorescence Yields for the Elements with 71≤Z≤92 Using 5.96 keV Photons, Nucl. Instr. Meth. B, 73-3 (1993) 319–323.
- [38]. Pajek M., Kobzev A.P., Sandrik R., Skrypnik A.V., Ilkhamov R.A., Khuamurodov S.H. and Lapicki G., M-shell X-Ray Production by 0.8–4.0 MeV 4He+ Ions in Ten Elements from Hafnium to Thorium, Phys. Rev. A, 42- (1990) 5298–5304.
- [39]. Konstantinov A.A. and Sazonova T.E., Determination of the M-Shell Fluorescence Coefficients of Gold, Lead and Bismuth, Bull. Acad. USSR, Phys. Ser., 32 (1969) 581.
- [40]. Shatendra K., Allowadhi K.L. and Sood B.S., Measurement of Average M-Shell Fluorescence Yields in Some High Z Elements, Physica B&C, 124-2 (1984) 279–281.
- [41]. Mann K.S., Singh N., Mittal R., Allawadhi K.L. and Sood B.S., M-Shell X-Ray Production Cross Sections in Au, Pb, Th and U by 6-12 keV Photons J. Phys. B: At. Mol. Opt. Phys., 23-15 (1990) 2497–2504.
- [42]. Hribar M., Kodre A. and Pahor J., A Study of The M-Shell Fluorescence Yıelds of Lead, Physica B&C, 115-1 (1982) 132–136.
- [43]. Jaffe A.A., The M X-ray from Radium D and the M X-ray Fluorescence Yield of Bismuth, Phys. Abstr., 58 (1955) 360.
- [44]. McGuire E.J., Atomic M-Shell Coster-Kronig, Auger, and Radiative Rates, and Fluorescence Yields for Ca-Th, Phys. Rev. A, 5-3 (1972) 1043–1047.
- [45]. Chen M.H., Crasemann B. and Mark H., Relativistic M-shell Radiationless Transitions, Phys. Rev. A, 21-2 (1980) 449–453.
- [46]. Chen M.H., Crasemann B. and Mark H., Radiationless Transitions to Atomic M1,2,3 shells: Results of Relativistic Theory, Phys. Rev. A, 27-6 (1983) 2989–2994.
- [47]. Hubbell, J.H., Bibliography and Current Status of K, L and Higher Shell Fluorescence Yields for Computation Photon Energy- Absorption Coefficients, NIST, Center of Radiation Research, NISTIR 89-4144, Gaithersburg, (1989).