Research Article
BibTex RIS Cite

Suda Uçucu Aromatik Hidrokarbonların (UAH’lar) Hassas ve Doğru Analizi için Gaz Kromatografisi Yöntemi Doğrulama Çalışması

Year 2018, , 970 - 982, 24.12.2018
https://doi.org/10.17776/csj.439764

Abstract

Endüstriyel faaliyetlerin sonucunda çok çeşitli kimyasallar ortaya
çıkmaktadır. Bunlar, insan sağlığı ve su ortamı üzerinde oldukça toksik ve
kanserojenik etkilere sahip olabilirler. Bu nedenle, ulusal ve uluslararası
listelerde yasaklanmış kimyasallar olarak yer alan bu maddeler, hem su
kaynakları hem de potansiyel alıcı su ortamlarında çevre ve insan sağlığı
açısından sürekli olarak izlenmelidir. Bu çalışmanın amacı, farklı su
örneklerinde tasfiye & tutma
(PT) işlemi ile gaz kromatografisi - kütle spektrometresi (GC-MS) kullanılarak
benzen, toluen, ksilenler, stiren ve klorobenzenler gibi oldukça tehlikeli
maddeler içeren bazı uçucu aromatik hidrokarbonların (UAH’lar) hassas ve doğru
tespitine yönelik yöntemi sunmaktır. Önerilen metot, seçicilik, doğrusallık,
tespit ve tayin limitleri (LOD ve LOQ), metot ve cihazın kesinlik çalışmaları
ile doğrulanmıştır. Çalışmada incelenen tüm analitler, PT-GC-MS için maksimum
performans sınırları içinde güvenilir şekilde ölçülmüştür. Seçicilik çalışması,
altı boş su örneğinin çift analizi ile gerçekleştirilmiştir. Su örneklerindeki
analitlerin alıkonma süreleri arasında herhangi bir bulgu veya gözleme rastlanmamıştır.
Kalibrasyon eğrilerinin doğrusallığı, dokuz konsantrasyon seviyesinde
hazırlanan standart çözeltilerin analizi ile çizilmiştir. Çalışma aralığındaki
analitik tepki doğrusallığı, tüm analitlerin korelasyon katsayıları 0,9996 'dan
büyük olduğu için mükemmel olarak değerlendirilebilir. Metot doğruluğu, geri
kazanım deneyi yapılarak gerçekleştirilmiştir. Analitlerin geri kazanımları %
88,4 ile % 94,6 arasında değişmektedir ve bağıl standart sapma (RSD) sonuçları
% 3,52 ile % 6,35 arasında bulunmuştur. Geliştirilen metodun uygulanabilirliği,
su örneklerinde ilgili analitlerin tespiti ile doğrulanmıştır.

References

  • [1]. Erol A., Ayla D., Mustafa Ö., Polisiklik Aromatik Hidrokarbonlar ve Sağlığa Etkileri, Mehmet Akif Üni. Fen Bil. Enst. Derg, 3-1 (2012) 45-52.
  • [2]. Tehrani R. and Van Aken B., Hydroxylated Polychlorinated Biphenyls in the Environment: Sources, Fate, and Toxicities, Environ. Sci. and Pollut. Res., 21-10 (2014) 6334-6345.
  • [3]. Tombs M.C., Volatile Organic Compounds in Water: Gas Chromatography, Encyclopaedia of Separation Science. North West Water Limited, Warrington, United Kingdom, 2000.
  • [4]. Jurdakova H., Kubinec R., Jurcisinova M., Krkosova Z., Blasko J., Ostrovsky I.,Sojak L., Berezkin V.G., Gas Chromatography Analysis of Benzene, Toluene, Ethylbenzene and Xylenes Using Newly Designed Needle Trap Device in Aqueous Samples, J. of Chrom. A, 1194 (2008) 161–164.
  • [5]. Bhattacharya S.S., Kim K.H., Ullah M.A., Goswami L., Sahariah B., Bhattacharyya P., The Effects of Composting Approaches on the Emissions of Anthropogenic Volatile Organic Compounds: A Comparison between Vermicomposting and General Aerobic Composting, Environ Pollut., 208 (2016) 600–607.
  • [6]. Mirzaei A., Leonardi S.G., Neri G., Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors, A review Ceramics Inter., 42 (2016) 15119–15141.
  • [7]. Salar-García M.J., Ortiz-Martínez V.M., Hernández-Fernández F.J., de los Ríos A.P., Quesada-Medina J., Ionic Liquid Technology to Recover Volatile Organic Compounds (VOCs), J. of Hazard. Mater., 321 (2017) 484–499.
  • [8]. Kountouriotis A., Aleiferis P.G., Charalambides A.G., Science of the Total Environment Numerical Investigation of VOC Levels in the Area of Petrol Stations, Sci. of the Total Environ., 470 (2014) 1205–1224.
  • [9]. ASTM. The ASTM Standard Practice for Determining Volatile Organic Compounds (VOC) Contents of Paints and Related Coating (D3960), American Society for Testing and Materials, Philadelphia, USA, 1989.
  • [10]. Pettersson J. and Roeraade J., Method for Analysis of Polar Volatile Trace Components in Aqueous Samples by Gas Chromatography, Anal. Chem., 77 (2005) 3365-3371.
  • [11]. Demeestere K., Dewulf J., De Witte B., Van Langenhove H., Sample Preparation for the Analysis of Volatile Organic Compounds in Air and Water Matrices, J. of Chrom. A, 1153 (2007) 130–144.
  • [12]. Ikem A., Measurement of Volatile Organic Compounds in Bottled and Tap Waters by Purge and Trap GC–MS: Are Drinking Water Types Different?, J. of Food Comp. and Anal., 23 (2010) 70–77.
  • [13]. Wang A., Fang F., Pawliszyn J., Sampling and Determination of Volatile Organic Compounds with Needle Trap Devices, J. of Chrom. A, 1072 (2005) 127–135.
  • [14]. Chary N.S. and Fernandez-Alba A.R., Determination of Volatile Organic Compounds in Drinking and Environmental Waters, Trends in Anal. Chem., 32 (2012) 60–75.
  • [15]. Ueta I., Mitsumori T., Suzuki Y., Kawakubo S., Saito Y., Determination of Very Volatile Organic Compounds in Water Samples by Purge And Trap Analysis with A Needle-Type Extraction Device, J. of Chrom. A, 1397 (2015) 27–31.
  • [16]. Chen P.S., Tseng Y.H., Chuang Y.L., Chen J.H., Determination of Volatile Organic Compounds in Water Using Headspace Knotted Hollow Fiber Microextraction, J. of Chrom. A, 1395 (2015) 41–47.
  • [17]. Silgoner I., Rosenberg E., Grasserbauer M., Determination of Volatile Organic Compounds in Water by Purge-And-Trap Gas Chromatography Coupled to Atomic Emission Detection, J. of Chrom. A, 768 (1997) 259–270.
  • [18]. Wu Z. and Fung Y.S., Isolation and Determination of Volatile Organic Compounds from Water by Dynamic Purge-and-Trap Technique Coupled with Capillary Gas Chromatography, Inter. J. of Environ. Anal. Chem., 82 (2010) 431-442.
  • [19]. Hino T., Nakanishi S., Maeda T., Hobo T., Determination of Very Volatile Organic Compounds in Environmental Water by Injection of a Large Amount of Headspace Gas into a Gas Chromatograph, J. of Chrom. A, 810 (1998) 141–147.
  • [20]. EPA. Method 524.3: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Version 1.0, 2009.
  • [21]. EURACHEM. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, 2nd edition, LGC, Teddington, 2014.
  • [22]. ATSDR. Agency for Toxic Substances and Registry, U.S. Public Health Service, U.S. Department of Health and Human Service, Atlanta, 1997.
  • [23]. EPA. Volatile Organic Compounds in Water, Soil, Soil gas, and Air by Direct Sampling Ion Trap Mass Spectrometry (DSITMS), U.S. Public Health Service, U.S. Department of Health and Human Service, USA, 2002.
  • [24]. Alonso M., Cerdan L., Godayol A., Antico E., Sanchez J.M., Headspace Needle-Trap Analysis of Priority Volatile Organic Compounds from Aqueous Samples: Application to the Analysis of Natural and Wastewaters, J. of Chrom. A, 1218 (2011) 8131-8139.
  • [25]. AOAC. Guidelines for Standard Method Performance Requirements, Appendix F., Association of Analytical Chemists, 20th edition, vol. 2, 2016,
  • [26]. Saito Y., Ueta I., Kotera K., Ogawa M., Wada H., Jinno K., In-Needle Extraction Device Designed For Gas Chromatographic Analysis Of Volatile Organic Compounds, J. of Chrom. A, 1106 (2006) 190-195.
  • [27]. Shin H.S. and Kim T.S., Analysis of Tert-Butanol, Methyl Tert-Butyl Ether, Benzene, Toluene, Ethylbenzene and Xylene in Ground Water by Headspace Gas Chromatography-Mass Spectrometry, Bull. Korean Chem. Soc., 30-12 (2009) 3049-3052.
  • [28]. Kaplan M., Oktem-Olgun E., Karaoglu O., A Rapid and Simple Method for Simultaneous Determination of Triphenylmethane Dye Residues in Rainbow Trouts by Liquid Chromatography–Tandem Mass Spectrometry, J. of Chrom. A, 1349 (2014) 37–43.

Gas Chromatography Method Validation Study for Sensitive and Accurate Determination of Volatile Aromatic Hydrocarbons (VAHs) in Water

Year 2018, , 970 - 982, 24.12.2018
https://doi.org/10.17776/csj.439764

Abstract

A wide range of chemicals comes to exist at the
end of the industrial activities. They could have highly toxic and carcinogenic
effects on the human health and water environment. Therefore, these substances,
which are listed as prohibited chemicals on national and international lists,
must be monitored permanently with regards to environmental and human health
both in the water resources and potential receiving waterbodies. The objective
of this study was to present the method for the sensitive and accurate
determination of some volatile aromatic hydrocarbons (VAHs)
, including quite dangerous substances such as
benzene, toluene, xylenes, styrene and chlorobenzenes by using gas
chromatography - mass spectrometry (GC-MS) with
purge & trap (PT) process in different water samples. The proposed method
was verified with the
selectivity,
linearity, limits of detection and quantification (LOD and LOQ),
precision studies of the method and instrument. All analytes examined in
the study were trustworthily measured within the maximum performance limits for
PT-GC-MS.
The selectivity work was carried out by
duplicate analysis of six blank water samples. There is no finding or
observation within the interval of the retention time of the analytes in the
water samples.
 The linearity of calibration curves was drawn by
analysis of prepared standard solutions
at nine concentration levels. The analytical response linearity in the working range can be assessed as an excellent since the correlation
coefficients higher than 0.9996 for all analytes. The method accuracy was
carried out by doing recovery experiment. Recoveries
of analytes have been changed
from 88.4 % to 94.6 % and the relative standard
deviation (RSD) results were found between 3.52 % and 6.35 %.
The applicability of developed method was
confirmed by the determination of
related analytes in the water samples.

References

  • [1]. Erol A., Ayla D., Mustafa Ö., Polisiklik Aromatik Hidrokarbonlar ve Sağlığa Etkileri, Mehmet Akif Üni. Fen Bil. Enst. Derg, 3-1 (2012) 45-52.
  • [2]. Tehrani R. and Van Aken B., Hydroxylated Polychlorinated Biphenyls in the Environment: Sources, Fate, and Toxicities, Environ. Sci. and Pollut. Res., 21-10 (2014) 6334-6345.
  • [3]. Tombs M.C., Volatile Organic Compounds in Water: Gas Chromatography, Encyclopaedia of Separation Science. North West Water Limited, Warrington, United Kingdom, 2000.
  • [4]. Jurdakova H., Kubinec R., Jurcisinova M., Krkosova Z., Blasko J., Ostrovsky I.,Sojak L., Berezkin V.G., Gas Chromatography Analysis of Benzene, Toluene, Ethylbenzene and Xylenes Using Newly Designed Needle Trap Device in Aqueous Samples, J. of Chrom. A, 1194 (2008) 161–164.
  • [5]. Bhattacharya S.S., Kim K.H., Ullah M.A., Goswami L., Sahariah B., Bhattacharyya P., The Effects of Composting Approaches on the Emissions of Anthropogenic Volatile Organic Compounds: A Comparison between Vermicomposting and General Aerobic Composting, Environ Pollut., 208 (2016) 600–607.
  • [6]. Mirzaei A., Leonardi S.G., Neri G., Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors, A review Ceramics Inter., 42 (2016) 15119–15141.
  • [7]. Salar-García M.J., Ortiz-Martínez V.M., Hernández-Fernández F.J., de los Ríos A.P., Quesada-Medina J., Ionic Liquid Technology to Recover Volatile Organic Compounds (VOCs), J. of Hazard. Mater., 321 (2017) 484–499.
  • [8]. Kountouriotis A., Aleiferis P.G., Charalambides A.G., Science of the Total Environment Numerical Investigation of VOC Levels in the Area of Petrol Stations, Sci. of the Total Environ., 470 (2014) 1205–1224.
  • [9]. ASTM. The ASTM Standard Practice for Determining Volatile Organic Compounds (VOC) Contents of Paints and Related Coating (D3960), American Society for Testing and Materials, Philadelphia, USA, 1989.
  • [10]. Pettersson J. and Roeraade J., Method for Analysis of Polar Volatile Trace Components in Aqueous Samples by Gas Chromatography, Anal. Chem., 77 (2005) 3365-3371.
  • [11]. Demeestere K., Dewulf J., De Witte B., Van Langenhove H., Sample Preparation for the Analysis of Volatile Organic Compounds in Air and Water Matrices, J. of Chrom. A, 1153 (2007) 130–144.
  • [12]. Ikem A., Measurement of Volatile Organic Compounds in Bottled and Tap Waters by Purge and Trap GC–MS: Are Drinking Water Types Different?, J. of Food Comp. and Anal., 23 (2010) 70–77.
  • [13]. Wang A., Fang F., Pawliszyn J., Sampling and Determination of Volatile Organic Compounds with Needle Trap Devices, J. of Chrom. A, 1072 (2005) 127–135.
  • [14]. Chary N.S. and Fernandez-Alba A.R., Determination of Volatile Organic Compounds in Drinking and Environmental Waters, Trends in Anal. Chem., 32 (2012) 60–75.
  • [15]. Ueta I., Mitsumori T., Suzuki Y., Kawakubo S., Saito Y., Determination of Very Volatile Organic Compounds in Water Samples by Purge And Trap Analysis with A Needle-Type Extraction Device, J. of Chrom. A, 1397 (2015) 27–31.
  • [16]. Chen P.S., Tseng Y.H., Chuang Y.L., Chen J.H., Determination of Volatile Organic Compounds in Water Using Headspace Knotted Hollow Fiber Microextraction, J. of Chrom. A, 1395 (2015) 41–47.
  • [17]. Silgoner I., Rosenberg E., Grasserbauer M., Determination of Volatile Organic Compounds in Water by Purge-And-Trap Gas Chromatography Coupled to Atomic Emission Detection, J. of Chrom. A, 768 (1997) 259–270.
  • [18]. Wu Z. and Fung Y.S., Isolation and Determination of Volatile Organic Compounds from Water by Dynamic Purge-and-Trap Technique Coupled with Capillary Gas Chromatography, Inter. J. of Environ. Anal. Chem., 82 (2010) 431-442.
  • [19]. Hino T., Nakanishi S., Maeda T., Hobo T., Determination of Very Volatile Organic Compounds in Environmental Water by Injection of a Large Amount of Headspace Gas into a Gas Chromatograph, J. of Chrom. A, 810 (1998) 141–147.
  • [20]. EPA. Method 524.3: Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry, Version 1.0, 2009.
  • [21]. EURACHEM. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, 2nd edition, LGC, Teddington, 2014.
  • [22]. ATSDR. Agency for Toxic Substances and Registry, U.S. Public Health Service, U.S. Department of Health and Human Service, Atlanta, 1997.
  • [23]. EPA. Volatile Organic Compounds in Water, Soil, Soil gas, and Air by Direct Sampling Ion Trap Mass Spectrometry (DSITMS), U.S. Public Health Service, U.S. Department of Health and Human Service, USA, 2002.
  • [24]. Alonso M., Cerdan L., Godayol A., Antico E., Sanchez J.M., Headspace Needle-Trap Analysis of Priority Volatile Organic Compounds from Aqueous Samples: Application to the Analysis of Natural and Wastewaters, J. of Chrom. A, 1218 (2011) 8131-8139.
  • [25]. AOAC. Guidelines for Standard Method Performance Requirements, Appendix F., Association of Analytical Chemists, 20th edition, vol. 2, 2016,
  • [26]. Saito Y., Ueta I., Kotera K., Ogawa M., Wada H., Jinno K., In-Needle Extraction Device Designed For Gas Chromatographic Analysis Of Volatile Organic Compounds, J. of Chrom. A, 1106 (2006) 190-195.
  • [27]. Shin H.S. and Kim T.S., Analysis of Tert-Butanol, Methyl Tert-Butyl Ether, Benzene, Toluene, Ethylbenzene and Xylene in Ground Water by Headspace Gas Chromatography-Mass Spectrometry, Bull. Korean Chem. Soc., 30-12 (2009) 3049-3052.
  • [28]. Kaplan M., Oktem-Olgun E., Karaoglu O., A Rapid and Simple Method for Simultaneous Determination of Triphenylmethane Dye Residues in Rainbow Trouts by Liquid Chromatography–Tandem Mass Spectrometry, J. of Chrom. A, 1349 (2014) 37–43.
There are 28 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Barış Güzel

Oltan Canlı

Elmas Öktem Olgun

Publication Date December 24, 2018
Submission Date July 2, 2018
Acceptance Date November 1, 2018
Published in Issue Year 2018

Cite

APA Güzel, B., Canlı, O., & Öktem Olgun, E. (2018). Gas Chromatography Method Validation Study for Sensitive and Accurate Determination of Volatile Aromatic Hydrocarbons (VAHs) in Water. Cumhuriyet Science Journal, 39(4), 970-982. https://doi.org/10.17776/csj.439764