Research Article
BibTex RIS Cite

Immobilization of Laccase in poly (Vinyl Alcohol)-Calcium Alginate Beads

Year 2018, , 688 - 693, 30.09.2018
https://doi.org/10.17776/csj.418897

Abstract

Laccase enzyme (L) obtained from Tramates versicolor was
entrapped into polyvinyl alcohol–calcium alginate (PVA-CaAlj) beads.
Michaelis-Menten constant (Km) and maximum reaction rate (Vmax) values were
found to be 1.70x10-2 mM and 2.08x10-3 mM.min-1
for free enzyme respectively. Km and Vmax values were found as 2.87x10-2
mM and 5.30 x 10-3 mM.min-1 for entrapped enzymes
respectively. Optimum pH was determined as 5.0 and 6.0 and optimum temperature
determined as 40oC and 45oC for free laccase and
entrapped laccase respectively. After 30 days of storage at 4 oC
free laccase retained 60 % of its original activity. Also after 30 days of
storage at 4 oC, entrapped enzymes were retained 85 % its original
activity. Immobilized enzyme was used repeatedly 10 times, were retained 75% of
its original activities.

References

  • [1]. Laurent N., Haddoub R., Flitsch SL., Enzyme catalysis on solid surfaces, Trends Biotechnol., 26 (2008) 328–337.
  • [2]. Tischer W. and Kasche V., Immobilized enzymes: crystals or carriers, Trends Biotechnol., 17 (1999) 326–335.
  • [3]. Pang R., Li M., Zhang C., Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation, Talanta., 131(2015) 38-45.
  • [4]. D’annibale A., Stazi S.R., Vinciguerra V., Mattia E.D., Sermanni G.G., Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment, Process Biochem., 34 (1999) 697–706.
  • [5]. D’annibale A., Stazi S.R., Vinciguerra V., Sermanni G., Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater, J Biotechnol., 77 (2000) 265–273.
  • [6]. Jiang D.S., Long S.Y., Huang J., Xıao H.Y., Zhou J.Y., Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres, Biochem. Eng. J., 25 (2005) 15–23.
  • [7]. Durán N., Rosa M.A., D’annibale A., Gianfreda L., Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review, Enzyme Microb. Tec., 31(2002) 907–931.
  • [8]. Jolivalta C., Brenon S., Caminade E., Mougin C., Pontié M., Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater, J. Membrane Sci., 180(2000) 103–113.
  • [9]. Wan Y., Lu R., Xiao L., Du Y., Miyakoshi T., Chen C., Knill C., Kennedy J., Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera, Int. J. Biol. Macromol., 47 (2010) 488–495.
  • [10]. Rotkova J., Sulakova R., Korecka L., Zdrazilova P., Jandova M., Lenfeld J., Horak D., Bilkova Z., Laccase immobilized on magnetic carriers for biotechnology applications, J. Magn. Mater., 321 (2009) 1335–1340.
  • [11]. Curulli A., Cusma A., Kaciulis S., Padeletti G., Pandolfi L., Valentini F., Vitocelli M., Immobilization of GOD and HRP enzyme on nanostructured substrates, Surf. Interface Anal., 38 (2006) 478–481.
  • [12]. Gokgoz M. and Altinok H., Immobilization of laccase on polyacrylamide and polyacrylamide - κ - carragennan-based semi-interpenetrating polymer networks, Artificial Cells, Blood Substitutes, and Biotechnology, 40 (2012) 326–330.
  • [13]. Yamak O., Kalkan N.A., Aksoy S., Altinok H., Hasirci N., Semi-interpenetrating polymer networks (semi-IPNs) for entrapment of laccase and their use in Acid Orange 52 decolorization, Process Biochemistry, 44 (2009) 440-445.
  • [14]. Koklukaya S.Z., Sezer S., Aksoy S., Hasirci N., Polyacrylamide-based semi-interpenetrating networks for entrapment of laccase and their use in azo dye decolorization, Biotechnology and Applied Biochemistry, 63(5) (2016) 699-707.
  • [15]. Makas Y.G. , Kalkan N.A., Aksoy S., Altinok H., Hasirci N., Immobilization of laccase in -carrageenan based semi-interpenetrating polymer Networks, Journal of Biotechnology, 148 (2010) 216–220.
  • [16]. Leonowicz A. and Grzywnowicz K., Quantitative estimation of laccase forms in some white rot fungi using syringaldazine as a substrate, Enzyme Microb. Tech., 3 (1981) 55–58.
  • [17]. Lante A., Crapisi A., Krastanov A., Spettoli P., Biodegradation of phenols by laccase immobilised in a membrane reactor, Process Biochem., 36 (2000) 51–58.
  • [18]. Al-Adhami A.J.H., Bryjak J., Markiewicz B.G., Chozch W.P., Immobilization of woodrotting fungi laccases on modified cellulose and acrylic carriers, Process Biochem., 37 (2002)1387–1394.
  • [19]. Dodor D.E., Hwang H., Ekunwe S., Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor, Enzyme Microb. Tech., 35 (2004) 210–217.
  • [20]. Fang H., Huang J., Ding L., Li M., Chen Z., Preparation of magnetic Chitosan nanoparticles and immobilization of Laccase, Journal of Wuhan University of Technology-Mater. Sci. Ed., 24 (2009) 42-47.
  • [21]. Yang W.Y., Min D.Y., Xiao S.W., Jin L., Rong L., Tetsuo M., Bo C., Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan, Process Biochem., 41 (2006) 1378-1382.
  • [22]. Lineweaver H. and Burk D.J., The determination of enzyme dissociation constant, Am. Chem. Soc., 56 (1934) 658–666.
  • [23]. Xiao H., Huang J., Liu C., Jiang D., Immobilization of Laccase on amine-terminated magnetic nano-composite by glutaraldehyde crosslinking method, T. Nonferr. Metal Soc., 16 (2006) 414-418.
  • [24]. Zamora P. P., Pereira M. C., Tiburtius R. L., Rosa M.A., Minussi C.R., Duran N., Decolarization of reactive dyes by immobilized Laccase, Appl. Catal B-Environ ., 42 (2003) 131-144.

Lakkazın poli (Vinil Alkol) -Kalsiyum Aljinat Kürelerine İmmobilizasyonu

Year 2018, , 688 - 693, 30.09.2018
https://doi.org/10.17776/csj.418897

Abstract

Tramates versicolor' dan elde edilen  lakkaz enzimi (L), polivinil alkol-kalsiyum
aljinat (PVA-CaAlj) kürelerine hapsedildi. Michaelis-Menten sabiti (Km) ve
maksimum reaksiyon hızı (Vmax) değerleri sırasıyla serbest enzim için 1.70x10-2
mM ve 2.08x10-3 mM.dak-1 olarak bulundu.İmmobilize enzim
için Km ve Vmax değerleri de sırasıyla 2.87x10-2 mM ve 5.30 x 10-3
mM.dak-1 olarak bulundu. Optimum pH değerleri serbest enzim için 5.0
ve immobilize enzim için 6.0 olarak belirlendi. Optimum sıcaklık sırasıyla
serbest lakkaz ve immobilize lakkaz için 40oC ve 45oC
olarak belirlendi. 4 oC tutulan serbest lakkazın 30 günlük depolama
sonrasında orijinal aktivitesinin % 60'ı koruduğu bulunurken aynı koşullarda
tutulan immobilize enzimin ise orijinal aktivitesinin% 85'ini koruduğu bulundu.
İmmobilize enzimin 10 kez tekrar kullanım sonrasında  orijinal aktivitesinin % 75'ini koruduğu
bulunmuştur.

References

  • [1]. Laurent N., Haddoub R., Flitsch SL., Enzyme catalysis on solid surfaces, Trends Biotechnol., 26 (2008) 328–337.
  • [2]. Tischer W. and Kasche V., Immobilized enzymes: crystals or carriers, Trends Biotechnol., 17 (1999) 326–335.
  • [3]. Pang R., Li M., Zhang C., Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: Diffusional limitation investigation, Talanta., 131(2015) 38-45.
  • [4]. D’annibale A., Stazi S.R., Vinciguerra V., Mattia E.D., Sermanni G.G., Characterization of immobilized laccase from Lentinula edodes and its use in olive-mill wastewater treatment, Process Biochem., 34 (1999) 697–706.
  • [5]. D’annibale A., Stazi S.R., Vinciguerra V., Sermanni G., Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater, J Biotechnol., 77 (2000) 265–273.
  • [6]. Jiang D.S., Long S.Y., Huang J., Xıao H.Y., Zhou J.Y., Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres, Biochem. Eng. J., 25 (2005) 15–23.
  • [7]. Durán N., Rosa M.A., D’annibale A., Gianfreda L., Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review, Enzyme Microb. Tec., 31(2002) 907–931.
  • [8]. Jolivalta C., Brenon S., Caminade E., Mougin C., Pontié M., Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater, J. Membrane Sci., 180(2000) 103–113.
  • [9]. Wan Y., Lu R., Xiao L., Du Y., Miyakoshi T., Chen C., Knill C., Kennedy J., Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera, Int. J. Biol. Macromol., 47 (2010) 488–495.
  • [10]. Rotkova J., Sulakova R., Korecka L., Zdrazilova P., Jandova M., Lenfeld J., Horak D., Bilkova Z., Laccase immobilized on magnetic carriers for biotechnology applications, J. Magn. Mater., 321 (2009) 1335–1340.
  • [11]. Curulli A., Cusma A., Kaciulis S., Padeletti G., Pandolfi L., Valentini F., Vitocelli M., Immobilization of GOD and HRP enzyme on nanostructured substrates, Surf. Interface Anal., 38 (2006) 478–481.
  • [12]. Gokgoz M. and Altinok H., Immobilization of laccase on polyacrylamide and polyacrylamide - κ - carragennan-based semi-interpenetrating polymer networks, Artificial Cells, Blood Substitutes, and Biotechnology, 40 (2012) 326–330.
  • [13]. Yamak O., Kalkan N.A., Aksoy S., Altinok H., Hasirci N., Semi-interpenetrating polymer networks (semi-IPNs) for entrapment of laccase and their use in Acid Orange 52 decolorization, Process Biochemistry, 44 (2009) 440-445.
  • [14]. Koklukaya S.Z., Sezer S., Aksoy S., Hasirci N., Polyacrylamide-based semi-interpenetrating networks for entrapment of laccase and their use in azo dye decolorization, Biotechnology and Applied Biochemistry, 63(5) (2016) 699-707.
  • [15]. Makas Y.G. , Kalkan N.A., Aksoy S., Altinok H., Hasirci N., Immobilization of laccase in -carrageenan based semi-interpenetrating polymer Networks, Journal of Biotechnology, 148 (2010) 216–220.
  • [16]. Leonowicz A. and Grzywnowicz K., Quantitative estimation of laccase forms in some white rot fungi using syringaldazine as a substrate, Enzyme Microb. Tech., 3 (1981) 55–58.
  • [17]. Lante A., Crapisi A., Krastanov A., Spettoli P., Biodegradation of phenols by laccase immobilised in a membrane reactor, Process Biochem., 36 (2000) 51–58.
  • [18]. Al-Adhami A.J.H., Bryjak J., Markiewicz B.G., Chozch W.P., Immobilization of woodrotting fungi laccases on modified cellulose and acrylic carriers, Process Biochem., 37 (2002)1387–1394.
  • [19]. Dodor D.E., Hwang H., Ekunwe S., Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor, Enzyme Microb. Tech., 35 (2004) 210–217.
  • [20]. Fang H., Huang J., Ding L., Li M., Chen Z., Preparation of magnetic Chitosan nanoparticles and immobilization of Laccase, Journal of Wuhan University of Technology-Mater. Sci. Ed., 24 (2009) 42-47.
  • [21]. Yang W.Y., Min D.Y., Xiao S.W., Jin L., Rong L., Tetsuo M., Bo C., Immobilization and characterization of laccase from Chinese Rhus vernicifera on modified chitosan, Process Biochem., 41 (2006) 1378-1382.
  • [22]. Lineweaver H. and Burk D.J., The determination of enzyme dissociation constant, Am. Chem. Soc., 56 (1934) 658–666.
  • [23]. Xiao H., Huang J., Liu C., Jiang D., Immobilization of Laccase on amine-terminated magnetic nano-composite by glutaraldehyde crosslinking method, T. Nonferr. Metal Soc., 16 (2006) 414-418.
  • [24]. Zamora P. P., Pereira M. C., Tiburtius R. L., Rosa M.A., Minussi C.R., Duran N., Decolarization of reactive dyes by immobilized Laccase, Appl. Catal B-Environ ., 42 (2003) 131-144.
There are 24 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Haydar Altınok

Publication Date September 30, 2018
Submission Date April 26, 2018
Acceptance Date September 12, 2018
Published in Issue Year 2018

Cite

APA Altınok, H. (2018). Immobilization of Laccase in poly (Vinyl Alcohol)-Calcium Alginate Beads. Cumhuriyet Science Journal, 39(3), 688-693. https://doi.org/10.17776/csj.418897