Research Article
BibTex RIS Cite

Çoklu-İlaç Dirençli P. aeruginosa ve E.coli Suşlarında Antibiyotik Direnç Genlerinin ve Sınıf 1 İntegron Gen Kasetlerinin Araştırılması

Year 2018, , 1063 - 1068, 24.12.2018
https://doi.org/10.17776/csj.409136

Abstract

P. aeruginosa ve E.coli izolatlarının birçok antibiyotiğe direnç kazanması nedeniyle
bu patojenlerin neden olduğu enfeksiyonların tedavisi zorlaşmıştır. Bundan
dolayı klinik izolatlarda antibiyotik direnç genlerinin belirlenmesi büyük önem
arz etmektedir. Bu çalışmanın amacı çoklu-ilaç dirençli P. aeruginosa ve E.coli
klinik suşlarında beta laktamaz direnç genlerinin ve sınıf 1 integronlar gen
kasetlerinin varlığının araştırılmasıdır. Gümüşhane Devlet Hastanesi yoğun
bakım ünitesinde yatan hastaların kan, idrar ve balgam örneklerinden izole
edilen 2 P. aeruginosa ve 2 E.coli izolatlarının tanımlaması ve
antibiyogramı Vitek 2 Compact otomatize sistemi ile çalışılmıştır. Total DNA
izolasyonu kaynatma DNA metoduyla yapılmıştır. blaVIM, blaNDM,
blaIMP, blaGES, blaCTXM-1, blaCTXM-2,
blaOXA-58, blaOXA-23, blaOXA-51, blaOXA-40, blaKPC ve sınıf 1 integron
gen kasetlerine ait primerler kullanılarak PZR’ler gerçekleştirilmiştir.
Amplikasyonun gerçekleştiği tüm örnekler %1’lik agaroz jelde yürütülmüştür ve
daha sonra UV ışığında görünür hale getirilmiştir. Antibiyogram sonucuna göre P. aeruginosa izolatları gentamisin
hariç kullanılan tüm antibiyotiklere karşı direnç gösterdiği belirlenmiştir. E.coli izolatlarının ise karbapenemlere
karşı duyarlı sefalosporin grubu antibiyotiklere karşı dirençli olduğu
görülmüştür. Sınıf A beta laktamaz genlerinden blaCTXM-1 4 suşun 3’ünde bulunurken, hiçbir suşta blaCTXM-2, blaKPC ve blaGES genleri tespit
edilmemiştir. Araştırılan sınıf B ve sınıf D beta laktamaz genlerinin varlığı
hiçbir örnekte görülmemiştir.  3 suşta
sınıf 1 integronun varlığı tespit edilmiştir. DNA dizi analiz sonucuna göre üç
integron pozitif örneğin dfrA17/AadA5
gen kasetine sahip olduğu belirlenmiştir.

References

  • [1]. Pitout J.D., Recent changes in the epidemiology and management of extended-spectrum β-lactamase-producing Enterobacteriaceae, F1000. Med. Rep. 1 (2009) pii:84.
  • [2]. Jadhav S., Mısra R., Gandham N., Ujagare M., Ghosh P., Kalpana A. and Chanda V., Increasıng incidence of multidrug resistance Klebsiella pneumoniae infections in hospital and community settings, Int. J. Microbiol. Res. 4 (2012) 253–7. [3]. Nordmann P., Dortet L. and Poirel L., Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends. Mol. Med. 18 (2012) 263–72.
  • [4]. [4] Giani T., Pini B., Arena F., Conte V., Bracco S., Migliavacca R., AMCLI-CRE Survey Participants., Pantosti A., Pagani L., Luzzaro F. and Rossolini G.M., Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011, Euro. Surveill. 18 (2013) pii:20489.
  • [5]. Köseoğlu O., Integrons, Mikrobiyol. Bul. 38 (2004) 305-12.
  • [6]. Partridge S.R., Recchia G.D., Scaramuzzi C., Collis C.M., Stokes H. and Hall R.M., Definition of the attI1 site of class 1 integrons, Microbiology. 146 (2000) 2855–2864.
  • [7]. Partridge S.R., Brown H.J., Stokes H. and Hall R.M.,. Transposons Tn1696 and Tn21and their integrons In4 and In2 have independent origins, Antimicrob. Agents Chemother. 45 (2001) 1263–1270.
  • [8]. Hochhut B., Lotfi Y., Mazel D., Faruque S.M., Woodgate R. and Waldor M.K., Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins, Antimicrob. Agents. Chemother. 45 (2001) 2991–3000.
  • [9]. Sørum H., Roberts M. and Crosa J., Identification and cloning of a tetracycline resistance gene from the fish pathogen Vibrio salmonicida, Antimicrob. Agents. Chemother. 36 (1992) 611–615.
  • [10]. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T. and Monnet D.L., Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance, Clin. Microbiol. Infect. 18 (2012) 268-81.
  • [11]. Gu B., Tong M., Zhao W., Liu G., Ning M., Pan S. and Zhao W., Prevalence and Characterization of Class I Inte-grons among Pseudomonas aeruginosa and Acinetobacter baumannii Isolates from Patients in Nanjing, China, J. of Clin. Microbio. 45 (2007) 241-243.
  • [12]. Strateva T. and Yordanov D., Pseudomonas aeruginosa —A Phenomenon of Bacterial Resistance, J. of Med. Microbio. 58 (2009) 1133-1148.
  • [13]. Fonseca E.L., Vieira V.V., Cipriano R. and Vi-cente A.C., Class 1 Integrons in Pseudomonas aeruginosa Isolates from Clinical Settings in Amazon Region, Brazil, FEMS Immuno. and Med. Microbio. 44 (2005) 303-309.
  • [14]. Cicek, A.Ç., Saral, A., Duzgun, A.O., Cizmeci, Z., Kayman, T., Balci, P.O., Dal, T., Firat, M., Yazici, Y., Sancakta,r M., Ozgumus, O.B. and Sandalli, C., Screening of Class 1 and Class 2 Integrons in Clinical Isolates of Pseudomonas aeruginosa Collected from Seven Hospitals in Turkey: A Multicenter Study, Open J. of Med. Microbio. 3 (2013) 227–233.
  • [15]. Chen, J., Su, Z., Liu, Y., Wang, S., Dai, X., Li, Y., Peng, S., Shao, Q., Zhang, H., Wen, P., Yu, J., Huang, X. and Xu, H., Identification and characterization of class 1 integrons among Pseudomonas aeruginosa isolates from patients in Zhenjiang, China. Int. J. Infect. Dis. 13 (2009) 717-21.
  • [16]. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute, (2013).
  • [17]. Pitout J.D., Nordmann P., Laupland K.B. and Poirel L., Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community, J Antimicrob. Chemother. 56 (2005) 52–9.
  • [18]. Onnberg A., Mölling P., Zimmermann J. and Söderquist B., Molecular and phenotypic characterization of Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases with focus on CTX-M in a low-endemic area in Sweden, APMIS 119 (2011) 287–95.
  • [19]. Iraz M., Özad Düzgün A., Sandallı C., Doymaz M.Z., Akkoyunlu Y., Saral A., Peleg A.Y., Özgümüş O.B., Beriş F.Ş., Karaoğlu H. and Çopur Çiçek A., Distribution of β-lactamase genes among carbapenem-resistant Klebsiella pneumoniae strains isolated from patients in Turkey, Ann. Lab. Med. 35 (2015) 595-601.
  • [20]. Meletis G., Exindari M., Vavatsi N., Sofianou D. and Diza E., Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa, Hippokratia. 16 (2012) 303-7.
  • [21]. Woodford N., Ellington M.J., Coelho J.M., Turton J.F., Ward M.E., Brown S., Amyes S.G. and Livermore DM., Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents. 27 (2006) 351–3.
  • [22]. Moubareck C., Bremont S., Conroy M.C., Courvalin P. and Lambert T., GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob. Agents. Chemother. 58 (2009) 3579–81.
  • [23]. Jeon B.C., Jeong S.H., Bae I.K., Kwon S.B., Lee K., Young D., Lee J.H., Song J.S. and Lee S.H., Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 b-lactamase in Korea, J. Clin. Microbiol. 43 (2005) 2241–45.
  • [24]. Xu L., Ensor V., Gossain S., Nye K. and Hawkey P., Rapid and simple detection of blaCTX-M genes by multiplex PCR assay, J. Med. Microbiol. 54 (2005) 1183–7.
  • [25]. Handal R., Qunibi L., Sahouri I., Juhari M., Dawodi R., Marzouqa H. and Hindiyeh M., Characterization of Carbapenem-Resistant Acinetobacter baumannii Strains Isolated from Hospitalized Patients in Palestine, Int. J. Microbiol, 2017 (2017) 8012104.

Investigation of Antibiotic Resistance Genes and Class 1 Integron in Multi-Drug Resistant P. aeruginosa and E. coli Strains

Year 2018, , 1063 - 1068, 24.12.2018
https://doi.org/10.17776/csj.409136

Abstract

P. aeruginosa and E.
coli
are resistant to many antibiotics, so the treatment of infections of
these pathogens has become difficult.
Therefore, searching for
the presence of antibiotic resistance genes in clinical isolates is of great
importance. The purpose of this study is to investigate the presence of
beta-lactam resistance genes and class 1 integron in multi-drug resistant P. aeruginosa
and E. coli clinical strains.
Vitek 2 Compact automatization system were used
for identification and antibiogram of 2 P.
aeruginosa
and 2 E. coli isolates which were isolated from blood, urine and sputum
specimens of patients whom were hospitalized in Gümüşhane State Hospital
intensive care unit. Total DNA isolation was done by boiling DNA method.
PCR were performed using primers of class 1
integron gene cassette, blaVIM,
blaNDM,blaIMP, blaGES, blaCTXM-1,
blaCTXM-2, blaOXA-58, blaOXA-23, blaOXA-51, blaOXA-40 and blaKPC. All amplification
samples were performed on 1% agarose gel and subsequently visualized under UV
light. According to the results of the antibiogram, P. aeruginosa isolates showed
resistance against all used antibiotics except gentamicin.
The E.
coli
isolates were found to be resistant to cephalosporin antibiotics and
susceptible to carbapenems.
blaCTXM-1-class A beta
lactamase genes was found in 3 strains of 4, while no blaCTXM-2, blaGES and blaKPC genes were detected in the strains.
The presence of the investigated class B and
class D beta lactamase genes was not
observed in any sample.
The presence of class 1
integron was detected in 3 strains.
According to the result
of the DNA sequence analysis, it was determined that three integron positive
samples had the dfrA1/AadA5 gene
cassettes.

References

  • [1]. Pitout J.D., Recent changes in the epidemiology and management of extended-spectrum β-lactamase-producing Enterobacteriaceae, F1000. Med. Rep. 1 (2009) pii:84.
  • [2]. Jadhav S., Mısra R., Gandham N., Ujagare M., Ghosh P., Kalpana A. and Chanda V., Increasıng incidence of multidrug resistance Klebsiella pneumoniae infections in hospital and community settings, Int. J. Microbiol. Res. 4 (2012) 253–7. [3]. Nordmann P., Dortet L. and Poirel L., Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends. Mol. Med. 18 (2012) 263–72.
  • [4]. [4] Giani T., Pini B., Arena F., Conte V., Bracco S., Migliavacca R., AMCLI-CRE Survey Participants., Pantosti A., Pagani L., Luzzaro F. and Rossolini G.M., Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011, Euro. Surveill. 18 (2013) pii:20489.
  • [5]. Köseoğlu O., Integrons, Mikrobiyol. Bul. 38 (2004) 305-12.
  • [6]. Partridge S.R., Recchia G.D., Scaramuzzi C., Collis C.M., Stokes H. and Hall R.M., Definition of the attI1 site of class 1 integrons, Microbiology. 146 (2000) 2855–2864.
  • [7]. Partridge S.R., Brown H.J., Stokes H. and Hall R.M.,. Transposons Tn1696 and Tn21and their integrons In4 and In2 have independent origins, Antimicrob. Agents Chemother. 45 (2001) 1263–1270.
  • [8]. Hochhut B., Lotfi Y., Mazel D., Faruque S.M., Woodgate R. and Waldor M.K., Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins, Antimicrob. Agents. Chemother. 45 (2001) 2991–3000.
  • [9]. Sørum H., Roberts M. and Crosa J., Identification and cloning of a tetracycline resistance gene from the fish pathogen Vibrio salmonicida, Antimicrob. Agents. Chemother. 36 (1992) 611–615.
  • [10]. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T. and Monnet D.L., Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance, Clin. Microbiol. Infect. 18 (2012) 268-81.
  • [11]. Gu B., Tong M., Zhao W., Liu G., Ning M., Pan S. and Zhao W., Prevalence and Characterization of Class I Inte-grons among Pseudomonas aeruginosa and Acinetobacter baumannii Isolates from Patients in Nanjing, China, J. of Clin. Microbio. 45 (2007) 241-243.
  • [12]. Strateva T. and Yordanov D., Pseudomonas aeruginosa —A Phenomenon of Bacterial Resistance, J. of Med. Microbio. 58 (2009) 1133-1148.
  • [13]. Fonseca E.L., Vieira V.V., Cipriano R. and Vi-cente A.C., Class 1 Integrons in Pseudomonas aeruginosa Isolates from Clinical Settings in Amazon Region, Brazil, FEMS Immuno. and Med. Microbio. 44 (2005) 303-309.
  • [14]. Cicek, A.Ç., Saral, A., Duzgun, A.O., Cizmeci, Z., Kayman, T., Balci, P.O., Dal, T., Firat, M., Yazici, Y., Sancakta,r M., Ozgumus, O.B. and Sandalli, C., Screening of Class 1 and Class 2 Integrons in Clinical Isolates of Pseudomonas aeruginosa Collected from Seven Hospitals in Turkey: A Multicenter Study, Open J. of Med. Microbio. 3 (2013) 227–233.
  • [15]. Chen, J., Su, Z., Liu, Y., Wang, S., Dai, X., Li, Y., Peng, S., Shao, Q., Zhang, H., Wen, P., Yu, J., Huang, X. and Xu, H., Identification and characterization of class 1 integrons among Pseudomonas aeruginosa isolates from patients in Zhenjiang, China. Int. J. Infect. Dis. 13 (2009) 717-21.
  • [16]. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute, (2013).
  • [17]. Pitout J.D., Nordmann P., Laupland K.B. and Poirel L., Emergence of Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs) in the community, J Antimicrob. Chemother. 56 (2005) 52–9.
  • [18]. Onnberg A., Mölling P., Zimmermann J. and Söderquist B., Molecular and phenotypic characterization of Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases with focus on CTX-M in a low-endemic area in Sweden, APMIS 119 (2011) 287–95.
  • [19]. Iraz M., Özad Düzgün A., Sandallı C., Doymaz M.Z., Akkoyunlu Y., Saral A., Peleg A.Y., Özgümüş O.B., Beriş F.Ş., Karaoğlu H. and Çopur Çiçek A., Distribution of β-lactamase genes among carbapenem-resistant Klebsiella pneumoniae strains isolated from patients in Turkey, Ann. Lab. Med. 35 (2015) 595-601.
  • [20]. Meletis G., Exindari M., Vavatsi N., Sofianou D. and Diza E., Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa, Hippokratia. 16 (2012) 303-7.
  • [21]. Woodford N., Ellington M.J., Coelho J.M., Turton J.F., Ward M.E., Brown S., Amyes S.G. and Livermore DM., Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents. 27 (2006) 351–3.
  • [22]. Moubareck C., Bremont S., Conroy M.C., Courvalin P. and Lambert T., GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob. Agents. Chemother. 58 (2009) 3579–81.
  • [23]. Jeon B.C., Jeong S.H., Bae I.K., Kwon S.B., Lee K., Young D., Lee J.H., Song J.S. and Lee S.H., Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing the OXA-23 b-lactamase in Korea, J. Clin. Microbiol. 43 (2005) 2241–45.
  • [24]. Xu L., Ensor V., Gossain S., Nye K. and Hawkey P., Rapid and simple detection of blaCTX-M genes by multiplex PCR assay, J. Med. Microbiol. 54 (2005) 1183–7.
  • [25]. Handal R., Qunibi L., Sahouri I., Juhari M., Dawodi R., Marzouqa H. and Hindiyeh M., Characterization of Carbapenem-Resistant Acinetobacter baumannii Strains Isolated from Hospitalized Patients in Palestine, Int. J. Microbiol, 2017 (2017) 8012104.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Natural Sciences
Authors

Azer Özad Düzgün

Ayşegül Saral

Publication Date December 24, 2018
Submission Date March 23, 2018
Acceptance Date October 19, 2018
Published in Issue Year 2018

Cite

APA Özad Düzgün, A., & Saral, A. (2018). Çoklu-İlaç Dirençli P. aeruginosa ve E.coli Suşlarında Antibiyotik Direnç Genlerinin ve Sınıf 1 İntegron Gen Kasetlerinin Araştırılması. Cumhuriyet Science Journal, 39(4), 1063-1068. https://doi.org/10.17776/csj.409136