Research Article
BibTex RIS Cite

Kayıpsız Eşyönsüz Elektromanyetik Saçılma ve Işıma Problemlerini Sonlu Farklar Zaman Uzayı Yöntemini Kullanarak Hızlı Çözümler

Year 2018, , 1107 - 1117, 24.12.2018
https://doi.org/10.17776/csj.393743

Abstract

Bu makalede, sonlu farklar zaman uzayı (FDTD)
yöntemine dayanan kayıpsız eşyönsüz materyeller içeren elektromanyetik saçılma
ve ışıma problemlerini çözmek için bir hızlandırma tekniği önerilmiştir. Bu
teknik sayesinde kayıpsız eşyönsüz elektromanyetik problemlerin simulasyon
süreleri önemli derecede azalmaktadır. Hızlandırma tekniğinin performansını
göstermek için kayıpsız eşyönsüz alttaş üzerine mikroşerit anten ve kayıpsız
eşyönsüz nesne içeren elektromanyetik saçılma ve ışıma problemlerinin analizi
yapılmıştır. Sonuç olarak, mikroşerit antenin rezonans frekansları, saçılma
probleminin radar kesit alanı ve ışıma probleminin yönlülük örüntüsü
eşyönsüzlükten etkilenmektedir.

References

  • [1] Schneider J. and Hudson S., The finite-difference time-domain method applied to anisotropic material, IEEE Trans. on Antennas and Propagation, 41-7 (1993) 994–999.
  • [2] Ge D., Yang L., Wei B., Ge N., and Zheng K., FDTD applied to lossy anisotropic medium and its parallel computing, Proceedings of ISAP, Seoul, Korea (2005).
  • [3] Jung K. Y., Teixeira F. L., and Lee R., Complex envelope PML-ADI-FDTD method for lossy anisotropic dielectrics, IEEE Antennas. Wireless Propag. Lett., 6 (2007) 643–646.
  • [4] Kaburcuk F. and Elsherbeni A. Z., A speeding up Technique for Lossy Anisotropic Algorithm in FDTD Method, Applied Computational Electromagnetics Society Journal, 31-12 (2016) 1377–1381.
  • [5] Kaburcuk F. and Elsherbeni A. Z., A speeding up technique for lossy anisotropic algorithm in FDTD method, 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES), Florence, 2017.
  • [6] Zhao A. P., Juntunen J., and Raisanen A. V., An efficient FDTD algortihm for the analysis of microstrip patch antennas printed on a general anisotropic substrate, IEEE Trans. Microwave Theory Tech., 47-7 (1999) 1142-1146.
  • [7] Dou L. and Sebak A. R., 3D FDTD method for arbitrary anisotropic materials, Microw. Opt. Technol. Lett., 48-10 (2006) 2083–2090.
  • [8] Roden J. and Gedney S., Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media, Microwave and Optical Technology Letters, 27-5 (2000) 334–339.
  • [9] Elsherbeni A. Z. and Demir V., The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations, 2nd ed. New Jersey: SciTech Publishing, 2016.
  • [10] Sheen D. M., Ali S. M., Abouzahra M. D., and Kong J. A., Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits, IEEE Trans. Microwave Theory Tech., 38-7 (1990) 849–857.

Fast Solutions for Lossless Anisotropic Electromagnetic Scattering and Radiation Problems Using the FDTD Method

Year 2018, , 1107 - 1117, 24.12.2018
https://doi.org/10.17776/csj.393743

Abstract

In this paper, an acceleration technique is
proposed to solve electromagnetic scattering and radiation problems, which
contain lossless anisotropic (Lossless-ANI) materials, based on the
finite-difference time-domain (FDTD) method. This technique provides a
remarkable reduction in the simulation time of Lossless-ANI electromagnetic
problems. A microstrip patch antenna (MPA) with a Lossless-ANI substrate, and
electromagnetic scattering and radiation problems involved a Lossless-ANI
scattering object are analyzed to show the performance of the acceleration
technique. Numerical results show that resonant frequencies of the MPA, the
bistatic radar cross section (RCS) of the scattering problem, and the
directivity pattern of the radiation problem are affected by the anisotropy.

References

  • [1] Schneider J. and Hudson S., The finite-difference time-domain method applied to anisotropic material, IEEE Trans. on Antennas and Propagation, 41-7 (1993) 994–999.
  • [2] Ge D., Yang L., Wei B., Ge N., and Zheng K., FDTD applied to lossy anisotropic medium and its parallel computing, Proceedings of ISAP, Seoul, Korea (2005).
  • [3] Jung K. Y., Teixeira F. L., and Lee R., Complex envelope PML-ADI-FDTD method for lossy anisotropic dielectrics, IEEE Antennas. Wireless Propag. Lett., 6 (2007) 643–646.
  • [4] Kaburcuk F. and Elsherbeni A. Z., A speeding up Technique for Lossy Anisotropic Algorithm in FDTD Method, Applied Computational Electromagnetics Society Journal, 31-12 (2016) 1377–1381.
  • [5] Kaburcuk F. and Elsherbeni A. Z., A speeding up technique for lossy anisotropic algorithm in FDTD method, 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES), Florence, 2017.
  • [6] Zhao A. P., Juntunen J., and Raisanen A. V., An efficient FDTD algortihm for the analysis of microstrip patch antennas printed on a general anisotropic substrate, IEEE Trans. Microwave Theory Tech., 47-7 (1999) 1142-1146.
  • [7] Dou L. and Sebak A. R., 3D FDTD method for arbitrary anisotropic materials, Microw. Opt. Technol. Lett., 48-10 (2006) 2083–2090.
  • [8] Roden J. and Gedney S., Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media, Microwave and Optical Technology Letters, 27-5 (2000) 334–339.
  • [9] Elsherbeni A. Z. and Demir V., The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations, 2nd ed. New Jersey: SciTech Publishing, 2016.
  • [10] Sheen D. M., Ali S. M., Abouzahra M. D., and Kong J. A., Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits, IEEE Trans. Microwave Theory Tech., 38-7 (1990) 849–857.
There are 10 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Fatih Kaburcuk

Publication Date December 24, 2018
Submission Date February 12, 2018
Acceptance Date October 17, 2018
Published in Issue Year 2018

Cite

APA Kaburcuk, F. (2018). Fast Solutions for Lossless Anisotropic Electromagnetic Scattering and Radiation Problems Using the FDTD Method. Cumhuriyet Science Journal, 39(4), 1107-1117. https://doi.org/10.17776/csj.393743