Research Article
BibTex RIS Cite

3 Boyutlu Sonlu Elemanlar Analizi Kullanılarak Farklı Mermi Geometrilerinin Relüktans Fırlatıcının Performansına Etkisinin İncelenmesi

Year 2019, , 518 - 526, 30.06.2019
https://doi.org/10.17776/csj.392910

Abstract

Bu çalışmada, relüktans
elektromanyetik fırlatıcının 3 boyutlu modeli Maxwell programı kullanılarak
oluşturulmuştur. Farklı mermi geometrilerinin etkisi model vasıtasıyla
incelenmiştir. En yüksek hıza sahip mermi geometrisi belirlenmiştir.
Fırlatıcının 3 boyutlu modeli oluşturulduktan sonra, farklı geometrilere ait
mermiler oluşturulmuş ve analizler yapılmıştır. Bu analizlerin sonucunda boru
tipi mermilerde; iç boşluk yarıçapı 4 mm olan merminin diğer boru tipi
mermilere göre daha yüksek hızla fırlatıldığı tespit edilmiştir. Çentikli
mermilerde ise çentik sayısına göre; 4 çentikli merminin diğer çentik
sayılarına sahip mermilerden daha hızlı fırlatıldığı, çentik yarıçapına göre;
çentik yarıçapı 0.5 mm olan çentikli merminin diğer mermilerden daha hızlı
olduğu tespit edilmiştir. Bu çalışmada en yüksek hıza iç boşluk yarıçapı 4 mm
olan 1050 den yapılmış boru tipi mermide ulaşılmıştır. Bu hız değeri 24.12
m/sn’dir.

References

  • Fair H. D., Electromagnetic propulsion: A new initiative, IEEE Transactions on Magnetics, 18-1 (1965) 4-6.
  • Mcnab I. R., Stefani F., Crawford M., Erengil M., Persad C. and Satapathy S., Development of a naval railgun, IEEE Transactions on Magnetics, 41-1 (2005) 206-210.
  • Bresie D. A. and Andrews J. A., Design of a reluctance accelerator, IEEE Transactions on Magnetics, 27-1 (1991) 623-627.
  • He J., Levi E., Zabar Z. and Birenbaum L., Concerning the design of capacitively driven induction coil guns, IEEE Transactions on Plasma Science, 17-3 (1989) 429-438.
  • Bayati M. S., Keshtkar A. and Gharib L., Analyzing the near and far field using finite difference and finite element method, IEEE Transactions on Plasma Science, 41-5 (2013) 1398-1402.
  • Marder B., A coilgun design primer, IEEE Transactions on Magnetics, 29-1 (1993) 701-705.
  • Kim S. W., Jung H. K. and Hahn S. Y., An optimal design of capacitor driven coilgun, IEEE Transactions on Magnetics, 30-2 (1994) 207-211.
  • Waindok A. and Mazur G., Mutual inductances in a mathematical model of the three-stage reluctance accelerator, 3rd International Students Conf. on Electrodynamics and Mechatronics, Opole, Poland, (2011) 115-118.
  • Lv Q., Li Z., Xie S., Zhang Q., Zhao K. and Xiang H., A practical electromagnetic launcher concept–part I: Primary structure design and armature optimal simulation, 16th International Symposium on Electromagnetic Launch Technology, Beijing, China, (2012) 1-5.
  • Hou Y., Liu Z., Yang L., Shen Z., Ouyang J. and Yang D., Analysis of back electromotive force in RCEML, 17th International Symposium on Electromagnetic Launch Technology, California, USA, (2014) 1-6.
  • Yadong Z., Ying W. and Jiangjun R., Capacitor-driven coil-gun scaling relationships, IEEE Transactions on Plasma Science, 39-1 (2011) 220-224.
  • He J. L., Zabar Z., Levi E. and Birenbaum L., Transient performance of linear induction launchers fed by generators and by capacitor banks, IEEE Transactions on Magnetics, 27-1 (1991) 585-590.
  • Korkmaz F., Topaloğlu I. and Gurbuz R., Simulink model of vector controlled linear induction motor with end effect for electromagnetic launcher system, Elektronika ir Elektrotechnika, 20-1 (2014) 29-32.
  • Waindok A. and Mazur G., A mathematical and physical models of the three-stage reluctance accelerator, 2nd International Students Conference on Electrodynamic and Mechatronics, Gora Sw. Anny, Poland, (2009) 29-30.
  • Zhiyuan L., Youtian L., Xueping M., Hongjun X. and Shumei C., Dynamic Research of Multi-Stage Reluctance Coil Gun, 17th International Symposium on Electromagnetic Launch Technology, San Diego, California, (2014) 1-4.
  • Cooper L. M., Vancleef A. R., Bristoll B. T. and Bartlett P. A., Reluctance accelerator efficiency optimization via pulse shaping, IEEE Access, 2 (2014) 1143-1148.
  • Xiang H., Lei B., Li Z. and Zhao K., Design and experiment of reluctance electromagnetic launcher with new-style armature, IEEE Transactions on Plasma Science, 41-5 (2013) 1066-1069.
  • Barhoumi E. M., Hajji M. and Salah B. B., Design of a double-stator linear switched reluctance motor for shunting railway channels, Turkish Journal of Electrical Engineering and Computer Sciences, 22 (2014) 302-314.
  • Kalender O., The optimization of launching a bullet using electromagnetic energy, Ph.D. thesis, Gazi University, Ankara, Turkey, (2005).
  • Hou Y., Liu Z., Ouyang J. M. and Yang D., Parameter settings of the projectile of the coil electromagnetic launcher, 16th International Symposium on Electromagnetic Launch Technology, Beijing, China, (2012) 1-4.
  • Chang J. H., Becker E. B. and Driga M. D., Coaxial electromagnetic launcher calculations using FE-BE method and hybrid potentials, IEEE Transactions on Magnetics, 29-1 (1993) 655-660.
  • Chaowei Z., Pengshu D., Xiaojun D., Sanqun L., Zhiyuan L. and Guanghui Z., Analysis of reluctance coil launcher performance using coupled field-circuit method, International Conference on Electrical Machines and Systems, Wuhan, China, (2008) 4049-4052.
  • Tarvydas P., Edge finite elements for 3D electromagnetic field modeling, Elektronika ir Elektrotechnika, 76-4 (2007) 29-32.
  • Barrera T. and Beard R., Exploration and verification analysis of a linear reluctance accelerator, 17th International Symposium on Electromagnetic Launch Technology, California, USA, (2014) 1-6.
  • Sveikata J., Tarvydas P. and Noreika A., Electric circuit analysis using finite element modeling, Elektronika ir Elektrotechnika, 63-7 (2005) 31-34.
  • Michaelides A. M. and Pollock C., Effect of end core flux on the performance of the switched reluctance motor, IEE Proceedings - Electric Power Applications, 141-6 (1994) 308-316.
  • Sen P. C., Principles of Electric Machines and Power Electronics. Singapore: John Wiley & Sons, 1989; pp 101-104.
  • Daldaban F. and Sari V., Analysis of a reluctance launcher by finite elements method, Journal of the Faculty of Engineering and Architecture of Gazi University, 30-4 (2015) 605-614.

Examination of the Effect of Different Projectile Geometries on the Performance of Reluctance Launcher Using 3D Finite Element Analysis

Year 2019, , 518 - 526, 30.06.2019
https://doi.org/10.17776/csj.392910

Abstract

In this paper, the 3D model
of a reluctance electromagnetic launcher was implemented using Maxwell program.
The effect of the different projectile geometries was examined via the model.
The projectile geometry with the highest velocity was determined. After
constructing 3D model of the launcher, projectiles with different geometries
were built and finally various projectiles with different geometries were
analyzed. As a result, it was determined that the tubular projectile with 4 mm
radius hole was the fastest among the tubular projectiles. Among the
projectiles with notches, the projectile with 4 notches was launched faster
than the others when the parameter was the number of notches, and the
projectile with 0.5 mm notch radius was faster than the others when the
parameter was the notch radius. In this paper, the highest velocity was reached
the tubular projectile with 4 mm radius that was built with the 1050 material.
The value of this velocity was 24.12 m/s.

References

  • Fair H. D., Electromagnetic propulsion: A new initiative, IEEE Transactions on Magnetics, 18-1 (1965) 4-6.
  • Mcnab I. R., Stefani F., Crawford M., Erengil M., Persad C. and Satapathy S., Development of a naval railgun, IEEE Transactions on Magnetics, 41-1 (2005) 206-210.
  • Bresie D. A. and Andrews J. A., Design of a reluctance accelerator, IEEE Transactions on Magnetics, 27-1 (1991) 623-627.
  • He J., Levi E., Zabar Z. and Birenbaum L., Concerning the design of capacitively driven induction coil guns, IEEE Transactions on Plasma Science, 17-3 (1989) 429-438.
  • Bayati M. S., Keshtkar A. and Gharib L., Analyzing the near and far field using finite difference and finite element method, IEEE Transactions on Plasma Science, 41-5 (2013) 1398-1402.
  • Marder B., A coilgun design primer, IEEE Transactions on Magnetics, 29-1 (1993) 701-705.
  • Kim S. W., Jung H. K. and Hahn S. Y., An optimal design of capacitor driven coilgun, IEEE Transactions on Magnetics, 30-2 (1994) 207-211.
  • Waindok A. and Mazur G., Mutual inductances in a mathematical model of the three-stage reluctance accelerator, 3rd International Students Conf. on Electrodynamics and Mechatronics, Opole, Poland, (2011) 115-118.
  • Lv Q., Li Z., Xie S., Zhang Q., Zhao K. and Xiang H., A practical electromagnetic launcher concept–part I: Primary structure design and armature optimal simulation, 16th International Symposium on Electromagnetic Launch Technology, Beijing, China, (2012) 1-5.
  • Hou Y., Liu Z., Yang L., Shen Z., Ouyang J. and Yang D., Analysis of back electromotive force in RCEML, 17th International Symposium on Electromagnetic Launch Technology, California, USA, (2014) 1-6.
  • Yadong Z., Ying W. and Jiangjun R., Capacitor-driven coil-gun scaling relationships, IEEE Transactions on Plasma Science, 39-1 (2011) 220-224.
  • He J. L., Zabar Z., Levi E. and Birenbaum L., Transient performance of linear induction launchers fed by generators and by capacitor banks, IEEE Transactions on Magnetics, 27-1 (1991) 585-590.
  • Korkmaz F., Topaloğlu I. and Gurbuz R., Simulink model of vector controlled linear induction motor with end effect for electromagnetic launcher system, Elektronika ir Elektrotechnika, 20-1 (2014) 29-32.
  • Waindok A. and Mazur G., A mathematical and physical models of the three-stage reluctance accelerator, 2nd International Students Conference on Electrodynamic and Mechatronics, Gora Sw. Anny, Poland, (2009) 29-30.
  • Zhiyuan L., Youtian L., Xueping M., Hongjun X. and Shumei C., Dynamic Research of Multi-Stage Reluctance Coil Gun, 17th International Symposium on Electromagnetic Launch Technology, San Diego, California, (2014) 1-4.
  • Cooper L. M., Vancleef A. R., Bristoll B. T. and Bartlett P. A., Reluctance accelerator efficiency optimization via pulse shaping, IEEE Access, 2 (2014) 1143-1148.
  • Xiang H., Lei B., Li Z. and Zhao K., Design and experiment of reluctance electromagnetic launcher with new-style armature, IEEE Transactions on Plasma Science, 41-5 (2013) 1066-1069.
  • Barhoumi E. M., Hajji M. and Salah B. B., Design of a double-stator linear switched reluctance motor for shunting railway channels, Turkish Journal of Electrical Engineering and Computer Sciences, 22 (2014) 302-314.
  • Kalender O., The optimization of launching a bullet using electromagnetic energy, Ph.D. thesis, Gazi University, Ankara, Turkey, (2005).
  • Hou Y., Liu Z., Ouyang J. M. and Yang D., Parameter settings of the projectile of the coil electromagnetic launcher, 16th International Symposium on Electromagnetic Launch Technology, Beijing, China, (2012) 1-4.
  • Chang J. H., Becker E. B. and Driga M. D., Coaxial electromagnetic launcher calculations using FE-BE method and hybrid potentials, IEEE Transactions on Magnetics, 29-1 (1993) 655-660.
  • Chaowei Z., Pengshu D., Xiaojun D., Sanqun L., Zhiyuan L. and Guanghui Z., Analysis of reluctance coil launcher performance using coupled field-circuit method, International Conference on Electrical Machines and Systems, Wuhan, China, (2008) 4049-4052.
  • Tarvydas P., Edge finite elements for 3D electromagnetic field modeling, Elektronika ir Elektrotechnika, 76-4 (2007) 29-32.
  • Barrera T. and Beard R., Exploration and verification analysis of a linear reluctance accelerator, 17th International Symposium on Electromagnetic Launch Technology, California, USA, (2014) 1-6.
  • Sveikata J., Tarvydas P. and Noreika A., Electric circuit analysis using finite element modeling, Elektronika ir Elektrotechnika, 63-7 (2005) 31-34.
  • Michaelides A. M. and Pollock C., Effect of end core flux on the performance of the switched reluctance motor, IEE Proceedings - Electric Power Applications, 141-6 (1994) 308-316.
  • Sen P. C., Principles of Electric Machines and Power Electronics. Singapore: John Wiley & Sons, 1989; pp 101-104.
  • Daldaban F. and Sari V., Analysis of a reluctance launcher by finite elements method, Journal of the Faculty of Engineering and Architecture of Gazi University, 30-4 (2015) 605-614.
There are 28 citations in total.

Details

Primary Language English
Journal Section Engineering Sciences
Authors

Vekil Sarı 0000-0001-5963-0179

Ferhat Dalbadan 0000-0002-8157-2152

Publication Date June 30, 2019
Submission Date February 9, 2018
Acceptance Date April 19, 2019
Published in Issue Year 2019

Cite

APA Sarı, V., & Dalbadan, F. (2019). Examination of the Effect of Different Projectile Geometries on the Performance of Reluctance Launcher Using 3D Finite Element Analysis. Cumhuriyet Science Journal, 40(2), 518-526. https://doi.org/10.17776/csj.392910