Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuantum Nokta Tabanlı Güneş Pilleri (QDSSCs) için Yarıiletken Kuantum Noktalarının İncelenmesi

Yıl 2017, , 121 - 129, 08.12.2017
https://doi.org/10.17776/csj.363334

Öz

Yarı
iletken kuantum noktaları (QD'ler) son zamanlarda çok yönlü optik ve
elektriksel özelliklerinden dolayı güneş enerjisi dönüşümü için bir malzeme
olarak büyük ilgi görmektedir. QD tabanlı güneş pilleri (QDSSCs), yeni nesil
güneş pilleri için umut verici gelişmeler gösteren gelişen yarıiletken QD güneş
pillerinden biridir. Bu çalışmada, 1) QDSSC'lerde kuantum sınırlandırma etkisi,
2) QD'lerin çoklu eksitasyon üretimi (MEG), 3) QD'lerin üretim yöntemleri ve 4)
güneş pilleri için nanokristalli fotoelektrodlar gibi konular üzerinde
durulmuştur. Ayrıca, gelecekteki QDSSC’ler üzerine yapılacak araştırmalar için
önerilerde bulunulmaktadır. QDSSC'lerin etkinliği halen düşük olmakla birlikte,
ileride QDSSC'lerin geliştirilmesinde önemli atılımlar olacağı kanaatindeyim.

Kaynakça

  • [1]. Tada H., Fujishima M., Kobayashi H. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem. Soc. Rev. 2011; 40 (7): 4232-4243.
  • [2]. Santra P.K., Kamat P.V. Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. J. Am. Chem. Soc.2002; 134(5): 2508-2511.
  • [3]. Ryu J., Lee S.H., Nam D.H., Park C.B. Rational design and engineering of quantum-dot-sensitized TiO₂ nanotube arrays for artificial photosynthesis. Adv. Mater. 2011; 23(16): 1883-1888.
  • [4]. Kamat P.V. Quantum Dot Solar Cells.- The Next Big Thing in Photovoltaics. J. Phys. Chem. Lett. 2013; 4 (6): 908-918.
  • [5]. Oregan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991; 353: 737-740.
  • [6]. Bomben P.G., Robson K.C.D., Sedach P.A., Berlinguette C.P. On the Viability of Cyclometalated Ru(II) Complexes for Light-Harvesting Applications. Inorg. Chem.2009; 48 (20): 9631-9643.
  • [7]. Zhao H.C., Harney J.P., Huang Y.T., Yum J.H., Nazeeruddin M.K., Gratzel M., et al., Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells. Inorg. Chem. 2012; 51(1): 1-3.
  • [8]. Panigrahi S, Basak D. J Colloid Interface Sci. 2011;364: 10-17.
  • [9]. Shen Q., Kobayashi J., Diguna L.J., Toyoda T., Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 2008; 103: 084304.
  • [10]. Plass R., Pelet,S., Krueger J., Gratzel M., Bach U. Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells. J. Phys. Chem. B. 2002; 106 (31): 7578-7580.
  • [11]. Yu P., Zhu K., Norman A.G., Ferrere S., Frank A.J., Nozik A.J. Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots. J. Phys. Chem. B. 2006; 110 (50): 25451-25454.
  • [12]. Gonzalez-Pedro V., Xu X., Mora-Sero I., Bisquert J. Modeling high-efficiency quantum dot sensitized solar cells. Acs Nano.2010; 4(10): 5783-5790.
  • [13]. Yu X.Y., Liao J.Y., Qiu K.Q., Kuang D.B., Su C.Y. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. Acs Nano. 2011; 5 (12): 9494-9500.
  • [14]. Cheng C.W., Karuturi S.K., Liu L.J., Liu J.P., Li H.X., Su L.T., et al., Quantum-Dot-Sensitized TiO2 Inverse Opals for Photoelectrochemical Hydrogen Generation. Small. 2012; 8 (1): 37-42.
  • [15]. Zhu G., Pan L., Xu T., Sun Z.. CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. Acs Appl. Mater. Inter. 2011; 3(8): 3146-3151.
  • [16]. Lee Y.L., Lo Y.S.. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Adv. Funct. Mater.2009; 19 (4): 604-609.
  • [17]. Tian J.J., Gao R., Zhang Q.F., Zhang S.G., Li Y.W., Lan J.L., et al.,. Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film. J. Phys. Chem. C. 2012; 116 (35): 18655-18662.
  • [18]. Kamat P.V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C. 2008; 112 (48): 18737-18753.
  • [19]. Chakrapani V., Baker D., Kamat P.V., Understanding the Role of the Sulfide Redox Couple (S2–/Sn2–) in Quantum Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2001; 133(24): 9607-9615.
  • [20]. Zhang Q., Uchaker E., Candelaria S.L., Cao G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013; 42 (7): 3127-3171.
  • [21]. Segets D., Lucas J.M., Taylor R.N.K., Scheele M., Zheng H., Alivisatos A.P., et al., Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. Acs Nano. 2012; 6(10): 9021-9032.
  • [22]. Wood V., Bulović V. Colloidal quantum dot light-emitting devices. Nano Rev. 2010; 1: 5202.
  • [23]. Shibu E., Sonoda A., Tao Z., Feng Q., Furube A., Masuo S., et al. Energy materials: supramolecular nanoparticles for solar energy harvesting. Nano Rev.2013; 4: 2107.
  • [24]. Lee J.R.I., Meulenberg R.W., Hanif K.M., Mattoussi H., Klepeis J.E., Terminello L.J., et al., Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots. Phys. Rev. Lett. 2007; 98: 146803.
  • [25]. Moreels I., Lambert K., Smeets D., De Muynck D., Nollet T., Martins J.C., et al., Size-dependent optical properties of colloidal PbS quantum dots. Acs Nano. 2009; 3, 3023-3030.
  • [26]. Kongkanand A., Tvrdy K., Takechi K., Kuno M., Kamat P.V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture. J. Am. Chem Soc.2008; 130: 4007-4015.
  • [27]. Xu Y., Schoonen M.A.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000; 85: 543-556.
  • [28]. Kim .SH., Markovich G., Rezvani S., Choi S.H., Wang K.L., Heath J.R. Tunnel diodes fabricated from CdSe nanocrystal monolayers. Appl. Phys. Lett. 1999; 74: 317-319.
  • [29]. Nozik, A.J. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 2010; 10 (8): 2735-2741.
  • [30]. Semonin O.E., Luther J.M., Choi S., Chen H.Y., Gao J., Nozik A.J., et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011; 334 (6062): 1530-1533.
  • [31]. Beard M.C. Multiple Exciton Generation in Semiconductor Quantum Dots. J. Phys. Chem. Lett. 2011; 2 (11): 1282-1288.
  • [32]. Emin S., Singh S.P., Han L., Satoh N., Islam A. Colloidal quantum dot solar cells. Sol. Energy 2011; 85 (6): 1264-1282.
  • [33]. Halim M.A. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials 2013; 3 (1): 22-47.
  • [34]. Choi Y., Seol M., Kim W., Yong K., Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application. J. Phys. Chem. C 2014; 118 (11): 5664-5670.
  • [35]. Hu Y., Wang B., Zhang J., Wang T., Liu R., Zhang J., et al. Synthesis and photoelectrochemical response of CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes. Nanoscale Res. Lett.2013; 8 (1): 222.
  • [36]. Senthamilselvi V., Saravanakumar K., Begum N.J., Anandhi R., Ravichandran A.T., Sakthivel B., et al. Photovoltaic properties of nanocrystalline CdS films deposited by SILAR and CBD techniques-a comparative study. J. Mater. Sci: Mater. Electron 2012; 23(1): 302-308.
  • [37]. Gimenez S., Mora-Sero I., Macor L., Guijarro N., Lana-Villarreal T., Go´mez R., et al. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnol. 2009; 20: 295204.
  • [38]. Guijarro N., Lana-Villarreal T., Mora-Sero I., Bisquert J., Go´mez R. CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachmen. J. Phys. Chem. C 2009; 113 (10): 4208-4214.
  • [39]. Hossain M.A., James R.J., Shen C., Jia P.H., Koh Z.Y., Mathews N., et al., 2012. CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. J. Mater. Chem. 2012; 22 (32): 16235-16242.
  • [40]. Lee J.W., Son D.Y., Ahn T.K., Shin H.W., Kim I.Y., Hwang S.J., et al. Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent. Sci. Rep. 2013; 3: 1050.
  • [41]. Zhang Q.F., Cao G.Z. Hierarchically structured photoelectrodes for dye-sensitized solar cells. J. Mater. Chem.2011; 21 (19): 6769-6774.
  • [42]. Zhang Q.F., Chou T.R., Russo B., Jenekhe S.A., Cao G.Z. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem. Int. Ed. Engl. 2008; 47(13): 2402-2406.
  • [43]. Zhang Q.F., Dandeneau C.S., Zhou X.Y., Cao G.Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009; 21: 4087-108.
  • [44]. Zhang Q.F., Yodyingyong S., Xi J.T., Myers D., Cao G.Z. Oxide nanowires for solar cell applications. Nanoscale 2012; 4 (5): 1436-1445.
  • [45]. Seol M., Ramasamy E., Lee J., Yong K. Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. J. Phys. Chem. C. 2011; 115: (44), 22018-22024.
  • [46]. Yao C.Z., Wei B.H., Meng L.X., Li H., Gong Q.J, Sun H., et al. Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core–shell nanorod arrays on fluorine-doped tin oxide. J. Power Sources 2012; 207: 222-228.
  • [47]. Bora T., Kyaw H.H., Dutta J. Zinc oxide-zinc stannate core–shell nanorod arrays for CdS quantum dot sensitized solar cells. Electrochim. Acta 2012; 68: 141-145.
  • [48]. Tian J.J., Zhang Q.F., Zhang L.L., Gao R., Shen L.F., Zhang S.G., et al. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Nanoscale 2013; 5 (3): 936-943.
  • [49]. Tian J.J., Zhang Q.F., Zhang L.L., Gao R., Shen L.F., Zhang S.G., et al.. Energy materials: core/shell structural photoelectrodes assembled with quantum dots for solar cells. Nano Rev. 2013; 4: 21080.
  • [50]. Irannejad A., Janghorban K., Tan O.K., Huang H., Lim C.K., Tan P.Y., et al. Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO–TiO2 core-shell nanorod electrodes. Electrochim. Acta 2011; 58: 19-24.

Investigation of Semiconductor Quantum Dots for Quantum Sensitized Solar Cells (QDSSCs)

Yıl 2017, , 121 - 129, 08.12.2017
https://doi.org/10.17776/csj.363334

Öz

Semiconductor
quantum dots (QDs) have recently attracted great interest as a material for
solar energy conversion due to its versatile optical and electrical properties.
QD-based solar cells (QDSSCs) are one of the evolving semiconductor QD solar
cells that show promising developments for the new generation of solar cells.
This work focuses on 1) quantum confinement effect in QDSSC, 2) multiple
excitation production (MEG) of QDs, 3) production methods of QDs and 4)
nanocrystalline photoelectrodes for solar cells. In addition, proposals are
made for research on future QDSSCs. Although the QDSSC's effectiveness is still
low, I believe there will be significant breakthroughs in the development of
QDSSCs in the future.

Kaynakça

  • [1]. Tada H., Fujishima M., Kobayashi H. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem. Soc. Rev. 2011; 40 (7): 4232-4243.
  • [2]. Santra P.K., Kamat P.V. Mn-Doped Quantum Dot Sensitized Solar Cells: A Strategy to Boost Efficiency over 5%. J. Am. Chem. Soc.2002; 134(5): 2508-2511.
  • [3]. Ryu J., Lee S.H., Nam D.H., Park C.B. Rational design and engineering of quantum-dot-sensitized TiO₂ nanotube arrays for artificial photosynthesis. Adv. Mater. 2011; 23(16): 1883-1888.
  • [4]. Kamat P.V. Quantum Dot Solar Cells.- The Next Big Thing in Photovoltaics. J. Phys. Chem. Lett. 2013; 4 (6): 908-918.
  • [5]. Oregan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991; 353: 737-740.
  • [6]. Bomben P.G., Robson K.C.D., Sedach P.A., Berlinguette C.P. On the Viability of Cyclometalated Ru(II) Complexes for Light-Harvesting Applications. Inorg. Chem.2009; 48 (20): 9631-9643.
  • [7]. Zhao H.C., Harney J.P., Huang Y.T., Yum J.H., Nazeeruddin M.K., Gratzel M., et al., Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells. Inorg. Chem. 2012; 51(1): 1-3.
  • [8]. Panigrahi S, Basak D. J Colloid Interface Sci. 2011;364: 10-17.
  • [9]. Shen Q., Kobayashi J., Diguna L.J., Toyoda T., Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 2008; 103: 084304.
  • [10]. Plass R., Pelet,S., Krueger J., Gratzel M., Bach U. Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells. J. Phys. Chem. B. 2002; 106 (31): 7578-7580.
  • [11]. Yu P., Zhu K., Norman A.G., Ferrere S., Frank A.J., Nozik A.J. Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots. J. Phys. Chem. B. 2006; 110 (50): 25451-25454.
  • [12]. Gonzalez-Pedro V., Xu X., Mora-Sero I., Bisquert J. Modeling high-efficiency quantum dot sensitized solar cells. Acs Nano.2010; 4(10): 5783-5790.
  • [13]. Yu X.Y., Liao J.Y., Qiu K.Q., Kuang D.B., Su C.Y. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. Acs Nano. 2011; 5 (12): 9494-9500.
  • [14]. Cheng C.W., Karuturi S.K., Liu L.J., Liu J.P., Li H.X., Su L.T., et al., Quantum-Dot-Sensitized TiO2 Inverse Opals for Photoelectrochemical Hydrogen Generation. Small. 2012; 8 (1): 37-42.
  • [15]. Zhu G., Pan L., Xu T., Sun Z.. CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. Acs Appl. Mater. Inter. 2011; 3(8): 3146-3151.
  • [16]. Lee Y.L., Lo Y.S.. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Adv. Funct. Mater.2009; 19 (4): 604-609.
  • [17]. Tian J.J., Gao R., Zhang Q.F., Zhang S.G., Li Y.W., Lan J.L., et al.,. Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film. J. Phys. Chem. C. 2012; 116 (35): 18655-18662.
  • [18]. Kamat P.V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C. 2008; 112 (48): 18737-18753.
  • [19]. Chakrapani V., Baker D., Kamat P.V., Understanding the Role of the Sulfide Redox Couple (S2–/Sn2–) in Quantum Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2001; 133(24): 9607-9615.
  • [20]. Zhang Q., Uchaker E., Candelaria S.L., Cao G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013; 42 (7): 3127-3171.
  • [21]. Segets D., Lucas J.M., Taylor R.N.K., Scheele M., Zheng H., Alivisatos A.P., et al., Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. Acs Nano. 2012; 6(10): 9021-9032.
  • [22]. Wood V., Bulović V. Colloidal quantum dot light-emitting devices. Nano Rev. 2010; 1: 5202.
  • [23]. Shibu E., Sonoda A., Tao Z., Feng Q., Furube A., Masuo S., et al. Energy materials: supramolecular nanoparticles for solar energy harvesting. Nano Rev.2013; 4: 2107.
  • [24]. Lee J.R.I., Meulenberg R.W., Hanif K.M., Mattoussi H., Klepeis J.E., Terminello L.J., et al., Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots. Phys. Rev. Lett. 2007; 98: 146803.
  • [25]. Moreels I., Lambert K., Smeets D., De Muynck D., Nollet T., Martins J.C., et al., Size-dependent optical properties of colloidal PbS quantum dots. Acs Nano. 2009; 3, 3023-3030.
  • [26]. Kongkanand A., Tvrdy K., Takechi K., Kuno M., Kamat P.V. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture. J. Am. Chem Soc.2008; 130: 4007-4015.
  • [27]. Xu Y., Schoonen M.A.A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000; 85: 543-556.
  • [28]. Kim .SH., Markovich G., Rezvani S., Choi S.H., Wang K.L., Heath J.R. Tunnel diodes fabricated from CdSe nanocrystal monolayers. Appl. Phys. Lett. 1999; 74: 317-319.
  • [29]. Nozik, A.J. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 2010; 10 (8): 2735-2741.
  • [30]. Semonin O.E., Luther J.M., Choi S., Chen H.Y., Gao J., Nozik A.J., et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011; 334 (6062): 1530-1533.
  • [31]. Beard M.C. Multiple Exciton Generation in Semiconductor Quantum Dots. J. Phys. Chem. Lett. 2011; 2 (11): 1282-1288.
  • [32]. Emin S., Singh S.P., Han L., Satoh N., Islam A. Colloidal quantum dot solar cells. Sol. Energy 2011; 85 (6): 1264-1282.
  • [33]. Halim M.A. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell. Nanomaterials 2013; 3 (1): 22-47.
  • [34]. Choi Y., Seol M., Kim W., Yong K., Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application. J. Phys. Chem. C 2014; 118 (11): 5664-5670.
  • [35]. Hu Y., Wang B., Zhang J., Wang T., Liu R., Zhang J., et al. Synthesis and photoelectrochemical response of CdS quantum dot-sensitized TiO2 nanorod array photoelectrodes. Nanoscale Res. Lett.2013; 8 (1): 222.
  • [36]. Senthamilselvi V., Saravanakumar K., Begum N.J., Anandhi R., Ravichandran A.T., Sakthivel B., et al. Photovoltaic properties of nanocrystalline CdS films deposited by SILAR and CBD techniques-a comparative study. J. Mater. Sci: Mater. Electron 2012; 23(1): 302-308.
  • [37]. Gimenez S., Mora-Sero I., Macor L., Guijarro N., Lana-Villarreal T., Go´mez R., et al. Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnol. 2009; 20: 295204.
  • [38]. Guijarro N., Lana-Villarreal T., Mora-Sero I., Bisquert J., Go´mez R. CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachmen. J. Phys. Chem. C 2009; 113 (10): 4208-4214.
  • [39]. Hossain M.A., James R.J., Shen C., Jia P.H., Koh Z.Y., Mathews N., et al., 2012. CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. J. Mater. Chem. 2012; 22 (32): 16235-16242.
  • [40]. Lee J.W., Son D.Y., Ahn T.K., Shin H.W., Kim I.Y., Hwang S.J., et al. Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent. Sci. Rep. 2013; 3: 1050.
  • [41]. Zhang Q.F., Cao G.Z. Hierarchically structured photoelectrodes for dye-sensitized solar cells. J. Mater. Chem.2011; 21 (19): 6769-6774.
  • [42]. Zhang Q.F., Chou T.R., Russo B., Jenekhe S.A., Cao G.Z. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem. Int. Ed. Engl. 2008; 47(13): 2402-2406.
  • [43]. Zhang Q.F., Dandeneau C.S., Zhou X.Y., Cao G.Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009; 21: 4087-108.
  • [44]. Zhang Q.F., Yodyingyong S., Xi J.T., Myers D., Cao G.Z. Oxide nanowires for solar cell applications. Nanoscale 2012; 4 (5): 1436-1445.
  • [45]. Seol M., Ramasamy E., Lee J., Yong K. Highly Efficient and Durable Quantum Dot Sensitized ZnO Nanowire Solar Cell Using Noble-Metal-Free Counter Electrode. J. Phys. Chem. C. 2011; 115: (44), 22018-22024.
  • [46]. Yao C.Z., Wei B.H., Meng L.X., Li H., Gong Q.J, Sun H., et al. Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core–shell nanorod arrays on fluorine-doped tin oxide. J. Power Sources 2012; 207: 222-228.
  • [47]. Bora T., Kyaw H.H., Dutta J. Zinc oxide-zinc stannate core–shell nanorod arrays for CdS quantum dot sensitized solar cells. Electrochim. Acta 2012; 68: 141-145.
  • [48]. Tian J.J., Zhang Q.F., Zhang L.L., Gao R., Shen L.F., Zhang S.G., et al. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells. Nanoscale 2013; 5 (3): 936-943.
  • [49]. Tian J.J., Zhang Q.F., Zhang L.L., Gao R., Shen L.F., Zhang S.G., et al.. Energy materials: core/shell structural photoelectrodes assembled with quantum dots for solar cells. Nano Rev. 2013; 4: 21080.
  • [50]. Irannejad A., Janghorban K., Tan O.K., Huang H., Lim C.K., Tan P.Y., et al. Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO–TiO2 core-shell nanorod electrodes. Electrochim. Acta 2011; 58: 19-24.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Bölüm Natural Sciences
Yazarlar

Sabit Horoz

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 5 Haziran 2017
Kabul Tarihi 1 Kasım 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Horoz, S. (2017). Investigation of Semiconductor Quantum Dots for Quantum Sensitized Solar Cells (QDSSCs). Cumhuriyet Science Journal, 38(4), 121-129. https://doi.org/10.17776/csj.363334