Conference Paper
BibTex RIS Cite

Hadronterapi Işın Hattı için Geant4 Benzetimi

Year 2018, , 162 - 168, 16.03.2018
https://doi.org/10.17776/csj.362623

Abstract

Hadrontherapy öncü bir
tekniktir ve dünya çapında sadece birkaç merkez bu ileri ve uzmanlaşmış kanser
tedavisini sağlayabilir. Geant4 (GEometry ANd Tracking 4), parçacıkların madde
içindeki etkileşimini simüle etmek için kullanılan C ++, ücretsiz ve açık bir
araç kitidir. Yüksek enerji fiziği, nükleer fizik ve tıbbın çeşitli alanlarında
kullanılmaktadır. Çalışmada, Monte Carlo simülasyon aracı Geant4 ile, gelişmiş
unsurlar kategorisinde modellenen bir proton-tedavi hattının tipik tüm
unsurları olan difüzörler, aralık değiştiriciler, kolimatörler ve detektörler
ile simronterapi ışın hattınının benzetimi yapıldı. Bu benzetim, doz ve Çizgisel
Enerji Transferi (LET) hesaplamasına izin vermiştir. Bu bağlamda bu çalışmada,
Geant4 10.2 sürümü ile gerçekleştirilen benzetimlerimizin ilk sonuçları ve
bunların Cironne tarafından belirlenenlerle karşılaştırılması verilmiştir.

References

  • [1]. Peh V. C. G. History of the discovry of x ray, part I- W. Rontgen and his discovery of x ray. Singapore.Med.J, 36 (1995) 437-441.
  • [2]. Bragg W., Kleeman R. On the alpha particles of radium, and their loss of range in passing through various atoms and molecules. Philosophical Magazine, 6-10 (1905) 318.
  • [3]. Wilson R. Radiological use of fast protons. Radiology. 1946.
  • [4]. Tobias. C. A. Heavy charged particles in cancer therapy. Radiobiology and radiotherapy National Cancer Institute Monograph, 24 (1967).
  • [5]. Larsson. B et a81l. The high-energy proton beam as a neurosurgical tool. Nature; 1958; 182: 1222-3.
  • [6]. Suit. HD et al. Clinical experience and expectation with protons and heavy ions. Int J RadiatOncol Biol Phys., 3 (1977) 115-25.
  • [7]. Ahlen S.P. Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles», Rev Mod Phys., 52 (1980) 121-173.
  • [8]. Chen G.T. et al., Treatment planning for heavy ion radiotherapy. Int J Radiat Oncol Biol Phys., 5 (1979) 1809-1819.
  • [9]. James M., Slater M.D., F.A.C.R. Rationale for, and Development of, the World’s First Hospital-based Proton Therapy System at Loma Linda University Medical Center. Slater JM. three. jsc. nasa. gov, 2012.
  • [10]. Yamada S, Honma T., Kanazawa M., et al, HIMAC And Medıcal Accelerator Projects In JAPAN. 4-9-1 Anagawa, Inage-ku, Chiba, 263 (1994) 8555, JAPAN.
  • [11]. Kraft G. History of the Heavy Ion Therapy at GSI. GSI Helmholtzzentrum für Schwerionen forschung GmbH, Planckstraße, 2 (2013) 64: 291.
  • [12]. Combs S. E, Jaekel. O, Heberer. T, Debus. J. Particle therapy at the Heidelberg Ion Therapy Center (HIT). Radiother Oncol, 95 (2010) 41-4.
  • [13]. Allison.Jet al., « Geant4 developments and applications» IEEE Trans.Nucl.Sci, 53-1,2 (2006) 270.
  • [14]. Cirrone P. G. A, et al, « 62 AMeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud», IEEE Trans Nucl Sci, 5-2 (2004) 860-865.
  • [15]. Romano F, et al, «A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line», Phys. Med. Biol. , , 592863-2882 (2014).
  • [16]. Cironne P. G.A., et al. Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies. Progress in Nuclear Science and Technology, 2 (2011) 207-212.
  • [17]. Agostinelli S. et al., Geant4 - a simulation toolkit. Nucl Instr Meth Phys Res, A536-3 (2003) 250-303.
  • [18]. Cirrone P. G. A., et al, Implementation of a new Monte Carlo GEANT4 simulation tool for the development of a protontherapy beam line and verification of the related dose distributions IEEE Trans Nucl Sci., 52 (2005) 262-265.
  • [19]. Wilkens J. J., Oelfke U. Analytical linear energy transfer calculations for proton therapy. Med Phys., 30-5 (2003) 806-815.
  • [20]. Brun R., Rademakers F., ROOT - An object oriented data analysis framework», Nucl Instr Meth Phys Res, A389-1,2 (1997) 81-86.
  • [21]. Linear Energy Transfer, Technical Report 16, International Commission on Radiation Units and measurements (ICRU), Washington DC, 1970.
  • [22]. Fundamental Quantities and Units for Ionizing Radiation, Technical Report 60, International Commission on Radiation Units and measurements (ICRU), Bethesda, MD, 1998.
  • [23]. Berger M. J. Penetration of Proton Beams Through Water I.Depth-dose Distribution, Spectra and LET Distribution. NISTIR

Simulation by Geant4 of hadrontherapy beam line

Year 2018, , 162 - 168, 16.03.2018
https://doi.org/10.17776/csj.362623

Abstract

Hadrontherapy represents a pioneer technique, and only few centers
worldwide can provide this advanced and specialized cancer treatment. Geant4
(GEometry ANd Tracking 4) is a C++, free and open toolkit that used to simulate
the interaction of particles in matter. It is employed in various fields from
high-energy physics, nuclear physics to medicine. By means of Monte Carlo
simulation tool Geant4, we have simulated the hadrontherapy beam line typical
of a proton-therapy line modeled in the category of the advanced examples with
all its elements: the diffusers, range shifters, collimators and detectors.
This Simulation has permited the calculation of dose and Linear Energy Transfer
(LET). In this context, this study reports the first results of our simulation
realized by means of Geant4 10.2 version and their comparizon with those
obteined by Cironne.

References

  • [1]. Peh V. C. G. History of the discovry of x ray, part I- W. Rontgen and his discovery of x ray. Singapore.Med.J, 36 (1995) 437-441.
  • [2]. Bragg W., Kleeman R. On the alpha particles of radium, and their loss of range in passing through various atoms and molecules. Philosophical Magazine, 6-10 (1905) 318.
  • [3]. Wilson R. Radiological use of fast protons. Radiology. 1946.
  • [4]. Tobias. C. A. Heavy charged particles in cancer therapy. Radiobiology and radiotherapy National Cancer Institute Monograph, 24 (1967).
  • [5]. Larsson. B et a81l. The high-energy proton beam as a neurosurgical tool. Nature; 1958; 182: 1222-3.
  • [6]. Suit. HD et al. Clinical experience and expectation with protons and heavy ions. Int J RadiatOncol Biol Phys., 3 (1977) 115-25.
  • [7]. Ahlen S.P. Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles», Rev Mod Phys., 52 (1980) 121-173.
  • [8]. Chen G.T. et al., Treatment planning for heavy ion radiotherapy. Int J Radiat Oncol Biol Phys., 5 (1979) 1809-1819.
  • [9]. James M., Slater M.D., F.A.C.R. Rationale for, and Development of, the World’s First Hospital-based Proton Therapy System at Loma Linda University Medical Center. Slater JM. three. jsc. nasa. gov, 2012.
  • [10]. Yamada S, Honma T., Kanazawa M., et al, HIMAC And Medıcal Accelerator Projects In JAPAN. 4-9-1 Anagawa, Inage-ku, Chiba, 263 (1994) 8555, JAPAN.
  • [11]. Kraft G. History of the Heavy Ion Therapy at GSI. GSI Helmholtzzentrum für Schwerionen forschung GmbH, Planckstraße, 2 (2013) 64: 291.
  • [12]. Combs S. E, Jaekel. O, Heberer. T, Debus. J. Particle therapy at the Heidelberg Ion Therapy Center (HIT). Radiother Oncol, 95 (2010) 41-4.
  • [13]. Allison.Jet al., « Geant4 developments and applications» IEEE Trans.Nucl.Sci, 53-1,2 (2006) 270.
  • [14]. Cirrone P. G. A, et al, « 62 AMeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud», IEEE Trans Nucl Sci, 5-2 (2004) 860-865.
  • [15]. Romano F, et al, «A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line», Phys. Med. Biol. , , 592863-2882 (2014).
  • [16]. Cironne P. G.A., et al. Hadrontherapy: a Geant4-Based Tool for Proton/Ion-Therapy Studies. Progress in Nuclear Science and Technology, 2 (2011) 207-212.
  • [17]. Agostinelli S. et al., Geant4 - a simulation toolkit. Nucl Instr Meth Phys Res, A536-3 (2003) 250-303.
  • [18]. Cirrone P. G. A., et al, Implementation of a new Monte Carlo GEANT4 simulation tool for the development of a protontherapy beam line and verification of the related dose distributions IEEE Trans Nucl Sci., 52 (2005) 262-265.
  • [19]. Wilkens J. J., Oelfke U. Analytical linear energy transfer calculations for proton therapy. Med Phys., 30-5 (2003) 806-815.
  • [20]. Brun R., Rademakers F., ROOT - An object oriented data analysis framework», Nucl Instr Meth Phys Res, A389-1,2 (1997) 81-86.
  • [21]. Linear Energy Transfer, Technical Report 16, International Commission on Radiation Units and measurements (ICRU), Washington DC, 1970.
  • [22]. Fundamental Quantities and Units for Ionizing Radiation, Technical Report 60, International Commission on Radiation Units and measurements (ICRU), Bethesda, MD, 1998.
  • [23]. Berger M. J. Penetration of Proton Beams Through Water I.Depth-dose Distribution, Spectra and LET Distribution. NISTIR
There are 23 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Fatima Zohra Chemınguı

Fatima Benrachı

Publication Date March 16, 2018
Submission Date December 5, 2017
Acceptance Date January 31, 2018
Published in Issue Year 2018

Cite

APA Chemınguı, F. Z., & Benrachı, F. (2018). Simulation by Geant4 of hadrontherapy beam line. Cumhuriyet Science Journal, 39(1), 162-168. https://doi.org/10.17776/csj.362623