Araştırma Makalesi
BibTex RIS Kaynak Göster

Benzimidazol Türevi Ligandlar İçeren [Mn(CO)3(bpy)L]X Tipi Komplekslerin DFT/TDDFT Analizi

Yıl 2017, , 690 - 698, 08.12.2017
https://doi.org/10.17776/csj.349257

Öz

Karbon
monoksit molekülünün doku için sadece toksik değil tedavi edici de olduğunun
anlaşılmasından sonra, güvenli ve kontrollü karbon monoksit taşıma ajanı olarak
metal karbonil komplekslerinin kullanılmaya başlanması, bu tür komplekslere
olan ilginin son yıllarda artmasına neden olmuştur. Bu nedenle pek çok yeni
kompleks sentezlenip karakterize edilmiş ve CO-salınım aktiviteleri
incelenmiştir. Hedef dokuya en uygun CO-salıcı molekülü bulabilmek için pek çok
molekülün sentezi gerekir ki bu durum zaman ve ekonomik kısıtlamalardan dolayı
tercih edilen bir yol değildir. Fakat sentezi planlanan bir molekülün DFT/TDDFT
hesaplarının yapılması, moleküllerin bir kısım özelliklerinin öngörülmesini
sağlayabilir. CO-salınımı açısından bu öngörünün oluşabilmesi için sentezi
yapılarak CO-salınımı incelenmiş fazla sayıda molekülün deneysel sonuçları ile
teorik/hesaplamalı sonuçlarının karşılaştırılması gerekir. Bu çalışmanın amacı,
BP86 ve B3LYP fonksiyonelleri ile kararlılıklarının karşılaştırılması için
[Mn(CO)3(bpy)L]X (bpy: 2,2-bipyridyl; L: N-4-methylbenzylbenzimidazole,
N-2,4,6-trimethylbenzylbenzimidazole, N-2,3,5,6-tetramethylbenzylbenzimidazole,
N-2,3,4,5,6-pentamethylbenzylbenzimidazole; X: SO3CF3, PF6)
moleküllerini optimize etmek, orbital etkileşimleri için duyarlı bölgelerin
saptanması için orbital yapılarını analiz etmek, ana elektronik geçişleri
saptamak ve ideal PhotoCORMs için öngörü kazanmaktır.

Kaynakça

  • [1]. Mond L., Langer C., Quincke F., Action of carbon monoxide on nickel, J Chem Soc 1890; 57: 749-53.
  • [2]. Romão C.C., Blättler W.A., Seixas J.D., Bernardes G.J.L., Developing drug molecules for theraphy with carbon monoxide, Chem Soc Rev 2012; 41: 3571-83.
  • [3]. Tenhunen R., Marver H.S., Schmid R., The enzymatic conversion of heme to billirubib by microsomal heme oxygenase, Biochemistry 1968; 61:748-55.
  • [4]. Hasegawa U., van der Viels A.J., Simeoni E., Wandrey C., Hubbel J.A., Carbon monoxide-releasing micelles for immunotheraphy, J Am Chem Soc 2010; 132: 18273-80.
  • [5]. Ahanger A.A., Prawez S., Kumar D., Prasad R., Tandan S.K., Kumar D., Wound healing activity of carbon monoxide liberated from CO-releasing molecule (CO-RM), Naunyn-Schmiedeberg's Archives of Pharmacology 2011; 384: 93-102.
  • [6]. Motterlini R., Haas B., Foresti R., Emerging concepts on the anti-inflammatory actions of carbon monoxide releasing molecules (CO-RMs), Medical Gas Research 2012; 2: 28-40.
  • [7]. Chau L.Y., Heme oxygenase-1:emerging target of cancer theraphy, Journal of Biomedical Science 2015; 22: 22.
  • [8]. Motterlini R., Otterbein L.E., The therapeutic potential of carbon monoxide, Nat Rev Drug Discov 2010; 9: 728-43.
  • [9]. Üstün E., Ayvaz M.Ç., Çelebi M.S., Aşcı G., Demir S., Özdemir İ., Structure, CO-releasing property, electrochemistry, DFT calculation, and antioxidant activity of benzimidazole derivative substituted [Mn(CO)3(bpy)L]PF6 type novel manganese complexes, Inorganica Chimica Acta 2016; 450: 182-9.
  • [10]. Üstün E., Özgür A., Coşkun K.A., Demir S., Özdemir İ., Tutar Y., CO-releasing properties and anticancer activities of manganese complexes with imidazole/benzimidazole ligands, J Coord Chem 2016; 69: 3384-94.
  • [11]. Mahan V.L., Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide, Medical Gas Research 2012; 2: 32-42.
  • [12]. Zacharia V.M., Shiloh M.U., Effect of carbon monoxide on Mycobacterium tuberculosis pathogenesis, Medical Gas Research 2012; 2: 30.
  • [13]. Patterson E.K., Fraser D.D., Capretta A., Potter R.F., Cepinskas G., Carbon monoxide-releasing molecule 3 inhibits myeloperoxidase (MPO) and protects against MPO-induced vascular endothelial cell activation/dysfunction Free Radical Biology and Medicine 2014; 70: 167-73.
  • [14]. Babu D., Motterlini, R., Lefebvre, R.A., CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation, British Jornal of Pharmacology 2015; 172: 1557-73.
  • [15]. Fairlamb I.J.S., Duhme-Klair A.K., Lynam J.M., Moulton B.E., O’Brien C.T., Sawle P., Hammad J., Motterlini R., η4-Pyrone iron(0)carbonyl complexes as effective CO-releasing molecules (CO-RMs), Bioorganic & Medicinal Chemistry Letters 2006; 16: 995-8.
  • [16]. Zobi F., Blacque O., Jacobs R.A., Schaub M.C., Bogdanova A.Y., 17 e− rhenium dicarbonyl CO-releasing molecules on a cobalamin scaffold for biological application, Dalton Trans 2012; 41: 370-78.
  • [17]. Romanski S., Kraus B., Schatzschneider U., Neudörfl J.M., Amslinger S., Schmalz H.G., Acyloxybutadiene Iron Tricarbonyl Complexes as Enzyme-Triggered CO-Releasing Molecules (ET-CORMs), Angew Chem Int. Ed 2011; 50: 2392-96.
  • [18]. Botov S., Stamellou E., Romanski S., Guttentag M., Alberto R., Neudörfl J.M., Yard B., Schmalz H.G., Synthesis and Performance of Acyloxy-diene-Fe(CO)3 Complexes with Variable Chain Lengths as Enzyme-Triggered Carbon Monoxide-Releasing Molecules, Organometallics 2013; 32: 3587-94.
  • [19]. Niesel J., Pinto A., N’Dongo H.W.P., Merz K., Ott I., Gust R., Schatzschneider U., Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane(tpm) manganese tricarbonyl complexes, Chem Commun 2001; 8: 1798-800.
  • [20]. Pierri A.E., Pallaoro A., Wu G., Ford P.C., A Luminescent and Biocompatible PhotoCORM, J Am Chem Soc 2012; 134: 18197-200.
  • [21]. Rimmer R.D., Pierri A.E., Ford P.C., Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable photoCORMs labilized by visible light, Coordination Chemistry Reviews 2012; 256: 1509-19.
  • [22]. Jazzazi T.M.A., Görls H., Gessner G., Heinemann S.H., Westerhausen W., Photosensitive iron(II)-based CO-releasing molecules (CORMs) with vicinal amino and diphenylphosphino substituted chelating ligands, J Organomet Chem 2013; 733: 63-70.
  • [23]. Johnson T.R., Mann B.E., Clark J.E., Foresti R., Green C.J., Motterlini R., Metal Carbonyls: A New Class of Pharmaceuticals? Angew Chem Int Ed 2003; 42: 3722-9.
  • [24]. Szymańska-Buzar T., Photochemical reactions of Group 6 metal carbonyls with alkenes Coordination Chemistry Reviews 2006; 250: 976-90.
  • [25]. Georgieva, N. Trendafilova, G. Bauer, Spectroscopic and theoretical study of Cu(II), Zn(II), Ni(II), Co(II) and Cd(II) complexes of glyoxilic acid oxime, Spectrochimica Acta Part A 2006; 63: 403-15.
  • [26]. Salassa L., Garino C., Salassa G., Gobetto R., Nevi C., Mechanism of Ligand Photodissociation in Photoactivable [Ru(bpy)2L2]2+Complexes: A Density Functional Theory Study, J Am Chem Soc 2008; 130: 9590-7.
  • [27]. Datta P., Mukhopadhyay A.P., Manna P., Tiekink E.R., Sil P.C., Sinha C., Structure, photophysics, electrochemistry, DFT calculation, and in-vitro antioxidant activity of coumarin Schiff base complexes of Group 6 metal carbonyls J Inorg Biochem 2011; 105: 577-88.
  • [28]. Gonzalez M.A., Carrington S.J., Fry N.L., Martinez J.L., Mascharak P.K., Syntheses, Structures, and Properties of New Manganese Carbonyls as Photoactive CO-Releasing Molecules: Design Strategies That Lead to CO Photolability in the Visible Region, Inorg Chem 2012; 51: 11930-40.
  • [29]. Pai S., Hafftlang M., Atongo G., Nagel C., Niesel J., Botov S., Schmalz H.G., Yard B., Schatzschneider U., New modular manganese(I) tricarbonyl complexes os PhotoCORMs: in vitro detection of photoinduced carbon monoxide release using COP-1 as a fluorogenic switch-on probe, Dalton Trans 2014; 43: 8664-78.
  • [30]. Üstün E., Koç Ş., Demir S., Özdemir İ., Carbon monoxide-releasing properties and DFT/TDDFT analysis of [Mn(CO)3(bpy)L]PF6 type novel manganese complexes, J Organomet Chem 2016; 815: 16-22.
  • [31]. Üstün E., Demir S., Coşkun F., Kaloğlu M., Şahin O., Büyükgüngör O., Özdemir İ., A theoretical insight for solvent effect on myoglobin assay of W(CO)4L2 type novel complexes with DFT/TDDFT, Journal of Molecular Structure 2016; 1123: 433-40.
  • [32]. Neese F., A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry, J Biol Inorg Chem 2006; 11: 702-11.
  • [33]. Neese F., Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling, Coordination Chemistry Reviews 2009; 253: 526-63.
  • [34]. Neese F., The ORCA program system, WIREs Comput Mol Sci 2012; 2: 73-8.
  • [35]. Üstün E., Özgür A., Coşkun K.A., Demir S., Özdemir İ., Tutar Y., Anticancer activities of manganese-based photoactivatable CO-releasing complexes (PhotoCORMs) with benzimidazole derivative ligands, Transition Metal Chemistry 2017; 42: 331-7.

DFT/TDDFT Analysis of [Mn(CO)3(bpy)L]X Type Complexes with Benzimidazole Derivative Ligands

Yıl 2017, , 690 - 698, 08.12.2017
https://doi.org/10.17776/csj.349257

Öz

Metal carbonyl complexes which have used as a
safe storing and controllable transporting agent for carbon monoxide have led
to increase in interest after the carbon monoxide molecule is not only toxic
but also therapeutic for tissue. Many novel metal carbonyl complexes therefore
were synthesized and characterized and CO-releasing properties of these
complexes were analyzed. Many CO-releasing molecules should be synthesized and
analyzed to find ideal one for target tissue, but this is not a preferable way
because of the economic and time constraints. DFT/TDDFT calculations of a
molecule which was planned to synthesize and analyze could be provide insights
for some characteristics of molecules. Experimental results of a great number
of synthesized/characterized molecules must be compared with
theoretical/computational results to gain insight into CO-releasing properties.
The aims of this study are to optimize [Mn(CO)3(bpy)L]X (bpy:
2,2-bipyridyl; L: N-4-methylbenzylbenzimidazole, N-2,4,6-trimethylbenzylbenzimidazole,
N-2,3,5,6-tetramethylbenzylbenzimidazole,
N-2,3,4,5,6-pentamethylbenzylbenzimidazole; X: SO3CF3, PF6)
molecules for comparing the stabilities with BP86 and B3LYP functionals, to
analyze orbital structures for detecting the susceptible region for orbital
interactions, to determine the main electronic transitions and to gain insight
for ideal PhotoCORMs.

Kaynakça

  • [1]. Mond L., Langer C., Quincke F., Action of carbon monoxide on nickel, J Chem Soc 1890; 57: 749-53.
  • [2]. Romão C.C., Blättler W.A., Seixas J.D., Bernardes G.J.L., Developing drug molecules for theraphy with carbon monoxide, Chem Soc Rev 2012; 41: 3571-83.
  • [3]. Tenhunen R., Marver H.S., Schmid R., The enzymatic conversion of heme to billirubib by microsomal heme oxygenase, Biochemistry 1968; 61:748-55.
  • [4]. Hasegawa U., van der Viels A.J., Simeoni E., Wandrey C., Hubbel J.A., Carbon monoxide-releasing micelles for immunotheraphy, J Am Chem Soc 2010; 132: 18273-80.
  • [5]. Ahanger A.A., Prawez S., Kumar D., Prasad R., Tandan S.K., Kumar D., Wound healing activity of carbon monoxide liberated from CO-releasing molecule (CO-RM), Naunyn-Schmiedeberg's Archives of Pharmacology 2011; 384: 93-102.
  • [6]. Motterlini R., Haas B., Foresti R., Emerging concepts on the anti-inflammatory actions of carbon monoxide releasing molecules (CO-RMs), Medical Gas Research 2012; 2: 28-40.
  • [7]. Chau L.Y., Heme oxygenase-1:emerging target of cancer theraphy, Journal of Biomedical Science 2015; 22: 22.
  • [8]. Motterlini R., Otterbein L.E., The therapeutic potential of carbon monoxide, Nat Rev Drug Discov 2010; 9: 728-43.
  • [9]. Üstün E., Ayvaz M.Ç., Çelebi M.S., Aşcı G., Demir S., Özdemir İ., Structure, CO-releasing property, electrochemistry, DFT calculation, and antioxidant activity of benzimidazole derivative substituted [Mn(CO)3(bpy)L]PF6 type novel manganese complexes, Inorganica Chimica Acta 2016; 450: 182-9.
  • [10]. Üstün E., Özgür A., Coşkun K.A., Demir S., Özdemir İ., Tutar Y., CO-releasing properties and anticancer activities of manganese complexes with imidazole/benzimidazole ligands, J Coord Chem 2016; 69: 3384-94.
  • [11]. Mahan V.L., Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide, Medical Gas Research 2012; 2: 32-42.
  • [12]. Zacharia V.M., Shiloh M.U., Effect of carbon monoxide on Mycobacterium tuberculosis pathogenesis, Medical Gas Research 2012; 2: 30.
  • [13]. Patterson E.K., Fraser D.D., Capretta A., Potter R.F., Cepinskas G., Carbon monoxide-releasing molecule 3 inhibits myeloperoxidase (MPO) and protects against MPO-induced vascular endothelial cell activation/dysfunction Free Radical Biology and Medicine 2014; 70: 167-73.
  • [14]. Babu D., Motterlini, R., Lefebvre, R.A., CO and CO-releasing molecules (CO-RMs) in acute gastrointestinal inflammation, British Jornal of Pharmacology 2015; 172: 1557-73.
  • [15]. Fairlamb I.J.S., Duhme-Klair A.K., Lynam J.M., Moulton B.E., O’Brien C.T., Sawle P., Hammad J., Motterlini R., η4-Pyrone iron(0)carbonyl complexes as effective CO-releasing molecules (CO-RMs), Bioorganic & Medicinal Chemistry Letters 2006; 16: 995-8.
  • [16]. Zobi F., Blacque O., Jacobs R.A., Schaub M.C., Bogdanova A.Y., 17 e− rhenium dicarbonyl CO-releasing molecules on a cobalamin scaffold for biological application, Dalton Trans 2012; 41: 370-78.
  • [17]. Romanski S., Kraus B., Schatzschneider U., Neudörfl J.M., Amslinger S., Schmalz H.G., Acyloxybutadiene Iron Tricarbonyl Complexes as Enzyme-Triggered CO-Releasing Molecules (ET-CORMs), Angew Chem Int. Ed 2011; 50: 2392-96.
  • [18]. Botov S., Stamellou E., Romanski S., Guttentag M., Alberto R., Neudörfl J.M., Yard B., Schmalz H.G., Synthesis and Performance of Acyloxy-diene-Fe(CO)3 Complexes with Variable Chain Lengths as Enzyme-Triggered Carbon Monoxide-Releasing Molecules, Organometallics 2013; 32: 3587-94.
  • [19]. Niesel J., Pinto A., N’Dongo H.W.P., Merz K., Ott I., Gust R., Schatzschneider U., Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane(tpm) manganese tricarbonyl complexes, Chem Commun 2001; 8: 1798-800.
  • [20]. Pierri A.E., Pallaoro A., Wu G., Ford P.C., A Luminescent and Biocompatible PhotoCORM, J Am Chem Soc 2012; 134: 18197-200.
  • [21]. Rimmer R.D., Pierri A.E., Ford P.C., Photochemically activated carbon monoxide release for biological targets. Toward developing air-stable photoCORMs labilized by visible light, Coordination Chemistry Reviews 2012; 256: 1509-19.
  • [22]. Jazzazi T.M.A., Görls H., Gessner G., Heinemann S.H., Westerhausen W., Photosensitive iron(II)-based CO-releasing molecules (CORMs) with vicinal amino and diphenylphosphino substituted chelating ligands, J Organomet Chem 2013; 733: 63-70.
  • [23]. Johnson T.R., Mann B.E., Clark J.E., Foresti R., Green C.J., Motterlini R., Metal Carbonyls: A New Class of Pharmaceuticals? Angew Chem Int Ed 2003; 42: 3722-9.
  • [24]. Szymańska-Buzar T., Photochemical reactions of Group 6 metal carbonyls with alkenes Coordination Chemistry Reviews 2006; 250: 976-90.
  • [25]. Georgieva, N. Trendafilova, G. Bauer, Spectroscopic and theoretical study of Cu(II), Zn(II), Ni(II), Co(II) and Cd(II) complexes of glyoxilic acid oxime, Spectrochimica Acta Part A 2006; 63: 403-15.
  • [26]. Salassa L., Garino C., Salassa G., Gobetto R., Nevi C., Mechanism of Ligand Photodissociation in Photoactivable [Ru(bpy)2L2]2+Complexes: A Density Functional Theory Study, J Am Chem Soc 2008; 130: 9590-7.
  • [27]. Datta P., Mukhopadhyay A.P., Manna P., Tiekink E.R., Sil P.C., Sinha C., Structure, photophysics, electrochemistry, DFT calculation, and in-vitro antioxidant activity of coumarin Schiff base complexes of Group 6 metal carbonyls J Inorg Biochem 2011; 105: 577-88.
  • [28]. Gonzalez M.A., Carrington S.J., Fry N.L., Martinez J.L., Mascharak P.K., Syntheses, Structures, and Properties of New Manganese Carbonyls as Photoactive CO-Releasing Molecules: Design Strategies That Lead to CO Photolability in the Visible Region, Inorg Chem 2012; 51: 11930-40.
  • [29]. Pai S., Hafftlang M., Atongo G., Nagel C., Niesel J., Botov S., Schmalz H.G., Yard B., Schatzschneider U., New modular manganese(I) tricarbonyl complexes os PhotoCORMs: in vitro detection of photoinduced carbon monoxide release using COP-1 as a fluorogenic switch-on probe, Dalton Trans 2014; 43: 8664-78.
  • [30]. Üstün E., Koç Ş., Demir S., Özdemir İ., Carbon monoxide-releasing properties and DFT/TDDFT analysis of [Mn(CO)3(bpy)L]PF6 type novel manganese complexes, J Organomet Chem 2016; 815: 16-22.
  • [31]. Üstün E., Demir S., Coşkun F., Kaloğlu M., Şahin O., Büyükgüngör O., Özdemir İ., A theoretical insight for solvent effect on myoglobin assay of W(CO)4L2 type novel complexes with DFT/TDDFT, Journal of Molecular Structure 2016; 1123: 433-40.
  • [32]. Neese F., A critical evaluation of DFT, including time-dependent DFT, applied to bioinorganic chemistry, J Biol Inorg Chem 2006; 11: 702-11.
  • [33]. Neese F., Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling, Coordination Chemistry Reviews 2009; 253: 526-63.
  • [34]. Neese F., The ORCA program system, WIREs Comput Mol Sci 2012; 2: 73-8.
  • [35]. Üstün E., Özgür A., Coşkun K.A., Demir S., Özdemir İ., Tutar Y., Anticancer activities of manganese-based photoactivatable CO-releasing complexes (PhotoCORMs) with benzimidazole derivative ligands, Transition Metal Chemistry 2017; 42: 331-7.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Bölüm Natural Sciences
Yazarlar

Elvan Üstün

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 6 Mart 2017
Kabul Tarihi 31 Temmuz 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Üstün, E. (2017). DFT/TDDFT Analysis of [Mn(CO)3(bpy)L]X Type Complexes with Benzimidazole Derivative Ligands. Cumhuriyet Science Journal, 38(4), 690-698. https://doi.org/10.17776/csj.349257