Araştırma Makalesi
BibTex RIS Kaynak Göster

Mika/Polyester Kompozit Malzemeye Organik Takviye Kullanımının Etkisi

Yıl 2017, , 603 - 610, 08.12.2017
https://doi.org/10.17776/csj.348276

Öz

Günümüzde
artan nüfusla birlikte çevre kirliliği problemleri ön plana çıkmış ve yükselen
hayat standardına bağlı değişen tüketim alışkanlıkları, ambalajlı ürün
satışlarının artmasına bu da katı atık kompozisyonun farklılaşmasına yol
açmıştır. Çoğunlukla su, meşrubat, sıvı yağ, sirke gibi sıvı gıdaların piyasaya
sürülmesi amacıyla kullanılan PET ambalajı, geri dönüşüm tesislerinde kırma,
yıkama, kurutma vb. bir dizi işlem kademesi sonrasında PET talaşları olarak
geri kazanılabilmektedir. Türkiye’de çam ormanları önemli bir yer tutmaktadır.
Mevsimsel olarak dökülen kozalak ya toprak üzerinde kalmakta ya da toplanıp
yakılmaktadır. Ancak yaşam döngüsü açısından, hammadde kaynaklarının daha
verimli kullanması ve zamanla ortaya çıkan yeni ihtiyaçların uygun maliyetlerle
karşılanması için oldukça yüksek miktardaki PET ambalaj atıkları ve kozalak
atıkları için alternative kullanım alanlarının yaratılması bu kapsamda katma
değeri yüksek kompozit malzeme üretimi hem ekonomik bir fırsat hem de
çeşitlilik sağlayacaktır.



Bu çalışmada inorganik bir malzeme olan mikanın farklı
oranlarda dolgu olarak kullanıldığı polyester matriksli kompozite organik
takviye örneği olarak iki farklı malzemenin; öğütülmüş çam kozalağı (P) ve PET
şişe talaşının (B) ayrı ayrı takviye edilmesinin mekanik özelliklere etkisi
araştırılmıştır. Kompozit malzemede dolgu maddesi mika ve takviyeler ( P/ B)
arasında % ağırlıkça (6:0, 9:0, 12:0, 6:6, 9:6 ve 12:6) oranı sağlanmıştır.
Farklı oranlarda yapılan mika katkısının hem çam kozalağı hem de PET şişe
talaşıyla ayrı ayrı üretilmiş kompozit malzemeye etkisi eğme, darbe direnci,
sertlik, yoğunluk gibi testlerle belirlenmiştir.

Kaynakça

  • [1]. Erdem S., An analysis of the Properties of Recycled PET Fiber Gypsum Composites, İstanbul Technical University, Graduate School of Science Engneering and Technology, PhD Thesis 2013; 2-3.
  • [2]. Perera R., Rosales C., Araque M.A., Coelho M.A., Composites of PET and PBT/PP with Bentonite. 16th International Conference on Composite Materials, 2007, Kyoto, Japan.
  • [3]. May-Pat A., Aviles F., Toro P., Yazdani-Pedram M., Cauich-Rodríguez J.V., Mechanical properties of PET composites using multiwalled carbon nanotubes functionalized by inorganic and itaconic acids, eXPRESS Polymer Letters 2012; 6: 96-106.
  • [4]. Ayrılmış N., Büyüksarı Ü., Dündar T., Waste pine cones as a source of reinforcing fillers for thermoplastic composites, Journal of Applied Polymer Science 2010; 117: 2324-2330.
  • [5]. Gökdai D., Akpınar Borazan A., Açıkbaş G., Effect of Marble: Pine Cone Waste Ratios on Mechanical Properties of Polyester Matrix Composites, Waste and Biomass Valorization 2017; 8: 1855-1862.
  • [6]. Cazan C., Cosnita M., Duta A., Effect of PET functionalization in composites of rubber-PET-HDPE type, Arabian Journal of Chemistry, Article in Press. 2015.
  • [7]. Won J., Jang C., Lee S., Kim H., Long-term performance of recycled PET fibre-reinforced cement composites. Construction and Building Materials 2010; 24: 660-665.
  • [8]. Gorrasi G., Senatore V., Vigliotta G., Belviso S., Pucciariello R, PET–halloysite nanotubes composites for packaging application: Preparation characterization and analysis of physical properties, European Polymer Journal 2014; 61: 145-156.
  • [9]. Ahrabi A.Z., Bilici, İ. and Bilgesu A.Y., Investigation of Composite Material Production Using Waste Pet’s, Journal of the Faculty of Engineering and Architecture of Gazi University 2012; 27: 467-471.
  • [10]. Nonato R.C., Bonse B.C., A study of PP/PET composites: Factorial design, mechanical and thermal properties, Polymer Testing 2016; 56: 167-173.
  • [11]. Javier C.S, Jorge D., Sergio A.R., Roberto Z.G., Optimization of the Tensile and Flexural Strengthof a Wood-PET Composite, Ingeniería Investigación y Tecnología 2015; 16:105-112.
  • [12]. Yang C., Liu P., Polypyrrole/conductive mica composites: Preparation, characterization and application in supercapacitor. Synthetic Metals 2010; 160: 768-773.
  • [13]. Gan D., Lu S., Song C., Wang Z., Physical properties of poly ether ketone ketone/ mica composites: effect of filler content, Materials Letters 2001; 48: 299-302.
  • [14]. Karpenja T., Lorentzon A., Wickholm K., Sustainability Aspects in Waste Management of Biocomposites, 26th IAPRI Symposium on Packaging, 2013, Sweden.
  • [15]. Akpınar Borazan A., Gokdai D., Polymer Composites Reinforced With Waste Marble Dust And Fibers From Chicken Feathers As An Alternative Material, Fresenius Environmental Bulletin 2017; 26: 2095-2103.
  • [16]. Martias C., Joliff Y., Favotto C., Effects of the addition of glass fibers, mica and vermiculite on the mechanical properties of a gypsum-based composite at room temperature and during a fire test, Composites: Part B 2014; 62: 37-53.
  • [17]. Arrakhiz F.Z., Achaby M.E., Benmoussa K., Bouhfid R., Essassi E.M., Qaiss A., Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Materials and Design 2012; 40: 528-535.
  • [18]. Baştürk S.B., Kanbur K., Polatoğlu İ., Yürekli Y., Mechanical Properties of Acorn and Pine Cone Filled Polymer Composites, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) 2015; 14: 144-153.
  • [19]. Puvanasvaran A.P., Loganathan T.M., Karuppiah K., Impact Analysis on Composite of PET. Journal of Mechanical Engineering and Technology 2009; 1: 73-86.
  • [20]. Dan-mallam Y., Hong T.W., Majid M.S.A., Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite, International Journal of Polymer Science 2015; Article ID 371958, 13 pages.
  • [21]. Dhakal H.N., Zhang Z.Y., Richardson M. O.W., Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites, Composites Science and Technology 2007; 67: 1674–1683.

Effect of Organic Reinforcement Usage on Mica/Polyester Composite Material

Yıl 2017, , 603 - 610, 08.12.2017
https://doi.org/10.17776/csj.348276

Öz

The
problem of environmental pollution has sprung to the fore with today’s
over-population and packaged product sales have risen due to the changing
consumption behaviors pursuant to today’s rising living standards, which caused
solid waste composition to differentiate. Poly ethylene terephthalate (PET)
bottle that is mostly used for the purpose of marketing liquids can be recycled
as PET chips after a certain set of procedures. Pine forests have an important
place in Turkey. Pine cones that fall seasonally either stay on the ground or
are collected and burned. That being said, creating alternative usage areas for
a huge amount of PET bottle wastes and pine cone wastes and, in the same scope,
production of composite materials with high added value will create both
economical opportunities and variety in terms of life cycle, more efficient
usage of raw material resources and better sales cost for future needs of
people.



Two different materials, which were grinded pine cones
(P) and PET bottle chips (B), as polyester matrix composite organic
reinforcement samples, where an inorganic material known as mica was used at
different ratios as filling, were reinforced separately and their resulting
effect on mechanical properties was researched. Wt% (6:0, 9:0, 12:0, 6:6, 9:6
and 12:6) was established between mica as the filling in the composite material
and the reinforcements (P/B). The effect induced by reinforcing mica at
different ratios on the composite material, which was manufactured separately
via both pine cone and PET bottle chip, was determined via tests to possess bending,
impact resistance etc..

Kaynakça

  • [1]. Erdem S., An analysis of the Properties of Recycled PET Fiber Gypsum Composites, İstanbul Technical University, Graduate School of Science Engneering and Technology, PhD Thesis 2013; 2-3.
  • [2]. Perera R., Rosales C., Araque M.A., Coelho M.A., Composites of PET and PBT/PP with Bentonite. 16th International Conference on Composite Materials, 2007, Kyoto, Japan.
  • [3]. May-Pat A., Aviles F., Toro P., Yazdani-Pedram M., Cauich-Rodríguez J.V., Mechanical properties of PET composites using multiwalled carbon nanotubes functionalized by inorganic and itaconic acids, eXPRESS Polymer Letters 2012; 6: 96-106.
  • [4]. Ayrılmış N., Büyüksarı Ü., Dündar T., Waste pine cones as a source of reinforcing fillers for thermoplastic composites, Journal of Applied Polymer Science 2010; 117: 2324-2330.
  • [5]. Gökdai D., Akpınar Borazan A., Açıkbaş G., Effect of Marble: Pine Cone Waste Ratios on Mechanical Properties of Polyester Matrix Composites, Waste and Biomass Valorization 2017; 8: 1855-1862.
  • [6]. Cazan C., Cosnita M., Duta A., Effect of PET functionalization in composites of rubber-PET-HDPE type, Arabian Journal of Chemistry, Article in Press. 2015.
  • [7]. Won J., Jang C., Lee S., Kim H., Long-term performance of recycled PET fibre-reinforced cement composites. Construction and Building Materials 2010; 24: 660-665.
  • [8]. Gorrasi G., Senatore V., Vigliotta G., Belviso S., Pucciariello R, PET–halloysite nanotubes composites for packaging application: Preparation characterization and analysis of physical properties, European Polymer Journal 2014; 61: 145-156.
  • [9]. Ahrabi A.Z., Bilici, İ. and Bilgesu A.Y., Investigation of Composite Material Production Using Waste Pet’s, Journal of the Faculty of Engineering and Architecture of Gazi University 2012; 27: 467-471.
  • [10]. Nonato R.C., Bonse B.C., A study of PP/PET composites: Factorial design, mechanical and thermal properties, Polymer Testing 2016; 56: 167-173.
  • [11]. Javier C.S, Jorge D., Sergio A.R., Roberto Z.G., Optimization of the Tensile and Flexural Strengthof a Wood-PET Composite, Ingeniería Investigación y Tecnología 2015; 16:105-112.
  • [12]. Yang C., Liu P., Polypyrrole/conductive mica composites: Preparation, characterization and application in supercapacitor. Synthetic Metals 2010; 160: 768-773.
  • [13]. Gan D., Lu S., Song C., Wang Z., Physical properties of poly ether ketone ketone/ mica composites: effect of filler content, Materials Letters 2001; 48: 299-302.
  • [14]. Karpenja T., Lorentzon A., Wickholm K., Sustainability Aspects in Waste Management of Biocomposites, 26th IAPRI Symposium on Packaging, 2013, Sweden.
  • [15]. Akpınar Borazan A., Gokdai D., Polymer Composites Reinforced With Waste Marble Dust And Fibers From Chicken Feathers As An Alternative Material, Fresenius Environmental Bulletin 2017; 26: 2095-2103.
  • [16]. Martias C., Joliff Y., Favotto C., Effects of the addition of glass fibers, mica and vermiculite on the mechanical properties of a gypsum-based composite at room temperature and during a fire test, Composites: Part B 2014; 62: 37-53.
  • [17]. Arrakhiz F.Z., Achaby M.E., Benmoussa K., Bouhfid R., Essassi E.M., Qaiss A., Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Materials and Design 2012; 40: 528-535.
  • [18]. Baştürk S.B., Kanbur K., Polatoğlu İ., Yürekli Y., Mechanical Properties of Acorn and Pine Cone Filled Polymer Composites, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) 2015; 14: 144-153.
  • [19]. Puvanasvaran A.P., Loganathan T.M., Karuppiah K., Impact Analysis on Composite of PET. Journal of Mechanical Engineering and Technology 2009; 1: 73-86.
  • [20]. Dan-mallam Y., Hong T.W., Majid M.S.A., Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite, International Journal of Polymer Science 2015; Article ID 371958, 13 pages.
  • [21]. Dhakal H.N., Zhang Z.Y., Richardson M. O.W., Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites, Composites Science and Technology 2007; 67: 1674–1683.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Bölüm Natural Sciences
Yazarlar

Alev Akpınar Borazan

Duygu Gokdaı

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 13 Şubat 2017
Kabul Tarihi 7 Haziran 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Akpınar Borazan, A., & Gokdaı, D. (2017). Effect of Organic Reinforcement Usage on Mica/Polyester Composite Material. Cumhuriyet Science Journal, 38(4), 603-610. https://doi.org/10.17776/csj.348276