Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample

Yıl 2017, , 419 - 426, 30.09.2017
https://doi.org/10.17776/csj.340473

Öz

Determination of hydrothermal alteration areas is one of the first stage
methodes used in mineral exploration studies, particularly of porphyry type
mineralizations. These studies were only possible by field investigations in
the past, but now, they can be easily detected with images from satellites, in
accordance with the developing technology. In this study, contacts between
geological units and the border of the hydrothermal alteration zones were
determined with SWIR images of ASTER in Ağmaşat Plato, located in the north of
Zara district of Sivas province. Decorrelation stretching and principal
component analysis were carried out on the SWIR images. The obtained results
highly coincide with the geological map which was prepared during the field
studies. These results will lead to the discovery of new potential fields.

Kaynakça

  • [1]. Rowan, L. C., Schmidt, R. G., Mars, J. C., 2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104, 74–87.
  • [2]. Bedini, E., Van Der Meer, F., Van, F., 2009. Ruitenbeek Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. Int. J. Remote. Sens., 30 (2), 327–348.
  • [3]. Gabr, S., Ghulam, A., Kusky, T., 2010. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev., 38, 59–69.
  • [4]. Pour, B.A., Hashim, M., Marghany, M., 2011. Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. Int. J. Phys. Sci., 6 (4), 917–929.
  • [5]. Hunt, G.R.,1977. Spectral signatures of particulate minerals in the visible and near infrared Geophysics, 42, 501–513.
  • [6]. Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. Int. J. Remote. Sens., 21, 847–859.
  • [7]. Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami,T., Pniel, M., 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36, 1062–1071.
  • [8]. Abrams, M., Hook, S.J., 1995. Simulated ASTER data for geologic studies IEEE Trans. Geosci. Remote. Sens., 33 (3), 1995.
  • [9]. Fujisada, H., 1995. Design and performance of ASTER instrument. Proceedings of SPIE, 2583, 16–25.
  • [10]. Crosta, A., De Souza Filho, C., Azevedo, F., Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote sensing, 24 (21), 4233–4240.
  • [11]. Di Tommaso, I., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina Ore Geol. Rev., 32, 275–290.
  • [12]. Ducart, D.F., Crosta, A.P., Filio, C.R.S., 2006. Alteration mineralogy at the Cerro La Mina epithermal prospect, Patagonia, Argentina: field mapping, short-wave infrared spectroscopy, and ASTER images. Econ. Geol., 101, 981–996.
  • [13]. Rowan, L., Hook, S.J., Abrams, M.J., Mars, J.C., 2003. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Economic Geology and the Bulletin of the Society of Economic Geologists 98 (5), 1019–1027.
  • [14]. Rowan, L.C., Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.
  • [15]. Rowan, L.C., Mars, J.C., Simpson, C.J., 2005. Lithologic mapping of the Mordar, NT, Australia, ultramafic complex by using Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) data. Remote Sensing of Environment, 99, 105–126.
  • [16]. Bedell, R.L., 2001. Geological mapping with ASTER satellite: new global satellite data that is a significant leap in remote sensing geologic and alteration mapping. Special Publication, Geo. Soc. of Nevada, 33, 329–334.
  • [17]. Ninomiya,Y., FU, B., 2003. Extracting lithological information from ASTER multispectral thermal infrared data in the northeastern Pamirs. Xinjiang Geology, 21, 22-30.
  • [18]. Rockwell, B.W., Hofstra, A.H., 2008. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data implications for geologic mapping and mineral resource investigations in well-studied and frontier areas Geosphere, 4 (1), 218-246.
  • [19]. Efe, A., Gökce, A., 1999. Geology and fluid inclusion studies of the Maden Village (İmranlı-Sivas) Pb-Zn deposits. Bulletin of faculty of engineering of Cumhuriyet University, Serie S- Earth Sciences, 16, 29-38
  • [20]. Boztuğ, D., 2008. Petrogenesis of the Kosedag Pluton, Susehri-NE Sivas, East-Central Pontides, Turkey. Turkish Journal of Earth Science, 17(2), 241-262.
  • [21]. Okay, A., Tüysüz, O., 1999. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156, 475-515.
  • [22]. Eyuboglu, Y., 2010. Late Cretaceous high-K volcanism in the eastern Pontides orogenic belt, and its implications for the geodynamic evolution of NE Turkey. International Geology Review 52 (2–3), 142–186.
  • [23]. Eyuboglu, Y., Santosh, M., Chung, S.L., 2011c. Crystal fractionation of adakitic magmas in the crust-mantle transition zone: petrology, geochemistry and U–Pb zircon chronology of the Seme adakites, Eastern Pontides, NE Turkey. Lithos 121, 151–166. [24]. Eyuboglu, Y., Chung, S.L., Santosh, M., Dudas, F.O., Akaryali, E., 2011a. Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Research 19, 413–429.
  • [25]. Eyuboglu, Y., Santosh, M., Dudas, F.O., Chung, S.L., Akaryali, E., 2011b. Migrating magmatism in a continental arc: geodynamics of the Eastern Mediterranean revisited. Journal of Geodynamics 52, 2–15.
  • [26]. Eyuboglu, Y., Santosh, M., Bektaş, O., Ayhan, S., 2011d. Arc magmatism as a window to plate kinematics and subduction polarity: example from the Eastern Pontides belt, NE Turkey. Geoscience Frontiers 2 (1), 49–56.
  • [27]. Eyuboglu, Y., Santosh, M., Chung, S.L., 2011e. Petrochemistry and U–Pb ages of adakitic intrusions from the Pulur massif (Eastern Pontides, NE Turkey): ımplications for slab roll-back and ridge subduction associated with Cenozoic convergent tectonics in eastern Mediterranean. Journal of Geology 119, 394–417.
  • [28]. Eyuboglu, Y., Santosh, M., Yi, K., Bektaş, O., Kwon, S., 2013a. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt and revised geodynamic model for the late Cenozoic Evolution of eastern Mediterranean region. Lithos 146–147, 218-232.
  • [29]. Eyuboglu, Y., Santosh, M., Dudas, F.O., Akaryali, E., Chung, S.L., Akdag, K., Bektas, O.,2013b. The nature of transition from adakitic to non-adakitic magmatism in a slab-window setting: a synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, 4, 353-375.
  • [30]. Başıbüyük, Z., 2006. Hydrothermal alteration mineralogy-petrography and geochemistry of Eocene volcanics: an example from quadrangle of Zara-İmranlı-Suşehri-Şerefiye (Northeast of Sivas, Central Eastern Anatolia, Turkey). PhD thesis, Sivas-Turkey, Cumhuriyet University, Institute of Science, 269pp.
  • [31]. Iwasakı, A, Tonooka, H, 2005. Validation of a crosstalk correction algorithm 371 for ASTER/SIWR. IEEE Transactions on Geoscience and Remote Sensing, 43, 2747-2751.
  • [32]. Gürsoy, Ö and Kaya, Ş., 2016. Detecting of Lithological Units by Using Terrestrial Spectral Data and Remote Sensing Image, Journal of the Indian Society of Remote Sensing, doi 10.1007/s12524-016-0586-1
  • [33]. Gillespie, A. R., Kahle, A. B., Walker, R. E. 1986. Color enhancement of highly correlated images: I. Decorrelation and HIS contrast stretches. Remote Sensing of Environment, 20, 209-235.
  • [34]. Gürsoy, Ö., Kaya, Ş., Çakir, Z., Tatar, O., Canbaz, O. 2017. Determining lateral offsets of rocks along the eastern part of the North Anatolian Fault Zone (Turkey) using spectral classification of satellite images and field measurements, Geomatics, Natural Hazards and Risk 10.1080/19475705.2017.1318794

Aster Uydu Görüntüleri ile Hidrotermal Alterasyon Alanlarının Belirlenmesi: Ağmaşat Yaylası-Zara (Sivas) / Türkiye Örneği

Yıl 2017, , 419 - 426, 30.09.2017
https://doi.org/10.17776/csj.340473

Öz

Hidrotermal alterasyon alanlarının tespiti, maden arama faaliyetlerinin
ilk aşamalarından bir tanesi olup özellikle porfiri tip zenginleşmelerin
keşfinde önemli bir adımı oluşturmaktadır. 
Önceleri arazi çalışmaları ve gözlemlerle tespit edilebilen bu tür
alanlar artık günümüzde gelişen teknoloji ile birlikte uydulardan elde edilen
görüntüler üzerinde yapılan işlemlerle tespit edilebilmektedir. Bu çalışmada
Sivas ilinin Zara ilçesinin kuzeyinde Ağmaşat Yaylası'nda belirlenen
hidrotermal alterasyon alanlarının ve çevre jeolojik birimlerinin sınırları
ASTER uydusu SWIR görüntüleri ile belirlenmeye çalışılmıştır. Uygulanan
dekorelasyon gerilmesi ve ana bileşenler dönüşümü metodları ile elde edilen
veriler, arazi çalışmaları sırasında hazırlanan jeoloji haritası ile yüksek oranda
örtüştüğü belirlenmiştir. Bu veriler ışığında tespit edilebilecek yeni
alterasyon alanları potansiyel maden sahası olarak değerlendirilebilecektir. 

Kaynakça

  • [1]. Rowan, L. C., Schmidt, R. G., Mars, J. C., 2006. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 104, 74–87.
  • [2]. Bedini, E., Van Der Meer, F., Van, F., 2009. Ruitenbeek Use of HyMap imaging spectrometer data to map mineralogy in the Rodalquilar caldera, southeast Spain. Int. J. Remote. Sens., 30 (2), 327–348.
  • [3]. Gabr, S., Ghulam, A., Kusky, T., 2010. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev., 38, 59–69.
  • [4]. Pour, B.A., Hashim, M., Marghany, M., 2011. Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. Int. J. Phys. Sci., 6 (4), 917–929.
  • [5]. Hunt, G.R.,1977. Spectral signatures of particulate minerals in the visible and near infrared Geophysics, 42, 501–513.
  • [6]. Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA's Terra platform. Int. J. Remote. Sens., 21, 847–859.
  • [7]. Yamaguchi, Y., Kahle, A.B., Tsu, H., Kawakami,T., Pniel, M., 1998. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36, 1062–1071.
  • [8]. Abrams, M., Hook, S.J., 1995. Simulated ASTER data for geologic studies IEEE Trans. Geosci. Remote. Sens., 33 (3), 1995.
  • [9]. Fujisada, H., 1995. Design and performance of ASTER instrument. Proceedings of SPIE, 2583, 16–25.
  • [10]. Crosta, A., De Souza Filho, C., Azevedo, F., Brodie, C., 2003. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote sensing, 24 (21), 4233–4240.
  • [11]. Di Tommaso, I., Rubinstein, N., 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina Ore Geol. Rev., 32, 275–290.
  • [12]. Ducart, D.F., Crosta, A.P., Filio, C.R.S., 2006. Alteration mineralogy at the Cerro La Mina epithermal prospect, Patagonia, Argentina: field mapping, short-wave infrared spectroscopy, and ASTER images. Econ. Geol., 101, 981–996.
  • [13]. Rowan, L., Hook, S.J., Abrams, M.J., Mars, J.C., 2003. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne thermal emission and reflection radiometer (ASTER), a new satellite-imaging system. Economic Geology and the Bulletin of the Society of Economic Geologists 98 (5), 1019–1027.
  • [14]. Rowan, L.C., Mars, J.C., 2003. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 350–366.
  • [15]. Rowan, L.C., Mars, J.C., Simpson, C.J., 2005. Lithologic mapping of the Mordar, NT, Australia, ultramafic complex by using Advanced Spaceborne Thermal Emission and reflection Radiometer (ASTER) data. Remote Sensing of Environment, 99, 105–126.
  • [16]. Bedell, R.L., 2001. Geological mapping with ASTER satellite: new global satellite data that is a significant leap in remote sensing geologic and alteration mapping. Special Publication, Geo. Soc. of Nevada, 33, 329–334.
  • [17]. Ninomiya,Y., FU, B., 2003. Extracting lithological information from ASTER multispectral thermal infrared data in the northeastern Pamirs. Xinjiang Geology, 21, 22-30.
  • [18]. Rockwell, B.W., Hofstra, A.H., 2008. Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data implications for geologic mapping and mineral resource investigations in well-studied and frontier areas Geosphere, 4 (1), 218-246.
  • [19]. Efe, A., Gökce, A., 1999. Geology and fluid inclusion studies of the Maden Village (İmranlı-Sivas) Pb-Zn deposits. Bulletin of faculty of engineering of Cumhuriyet University, Serie S- Earth Sciences, 16, 29-38
  • [20]. Boztuğ, D., 2008. Petrogenesis of the Kosedag Pluton, Susehri-NE Sivas, East-Central Pontides, Turkey. Turkish Journal of Earth Science, 17(2), 241-262.
  • [21]. Okay, A., Tüysüz, O., 1999. Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156, 475-515.
  • [22]. Eyuboglu, Y., 2010. Late Cretaceous high-K volcanism in the eastern Pontides orogenic belt, and its implications for the geodynamic evolution of NE Turkey. International Geology Review 52 (2–3), 142–186.
  • [23]. Eyuboglu, Y., Santosh, M., Chung, S.L., 2011c. Crystal fractionation of adakitic magmas in the crust-mantle transition zone: petrology, geochemistry and U–Pb zircon chronology of the Seme adakites, Eastern Pontides, NE Turkey. Lithos 121, 151–166. [24]. Eyuboglu, Y., Chung, S.L., Santosh, M., Dudas, F.O., Akaryali, E., 2011a. Transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Research 19, 413–429.
  • [25]. Eyuboglu, Y., Santosh, M., Dudas, F.O., Chung, S.L., Akaryali, E., 2011b. Migrating magmatism in a continental arc: geodynamics of the Eastern Mediterranean revisited. Journal of Geodynamics 52, 2–15.
  • [26]. Eyuboglu, Y., Santosh, M., Bektaş, O., Ayhan, S., 2011d. Arc magmatism as a window to plate kinematics and subduction polarity: example from the Eastern Pontides belt, NE Turkey. Geoscience Frontiers 2 (1), 49–56.
  • [27]. Eyuboglu, Y., Santosh, M., Chung, S.L., 2011e. Petrochemistry and U–Pb ages of adakitic intrusions from the Pulur massif (Eastern Pontides, NE Turkey): ımplications for slab roll-back and ridge subduction associated with Cenozoic convergent tectonics in eastern Mediterranean. Journal of Geology 119, 394–417.
  • [28]. Eyuboglu, Y., Santosh, M., Yi, K., Bektaş, O., Kwon, S., 2013a. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt and revised geodynamic model for the late Cenozoic Evolution of eastern Mediterranean region. Lithos 146–147, 218-232.
  • [29]. Eyuboglu, Y., Santosh, M., Dudas, F.O., Akaryali, E., Chung, S.L., Akdag, K., Bektas, O.,2013b. The nature of transition from adakitic to non-adakitic magmatism in a slab-window setting: a synthesis from the eastern Pontides, NE Turkey. Geoscience Frontiers, 4, 353-375.
  • [30]. Başıbüyük, Z., 2006. Hydrothermal alteration mineralogy-petrography and geochemistry of Eocene volcanics: an example from quadrangle of Zara-İmranlı-Suşehri-Şerefiye (Northeast of Sivas, Central Eastern Anatolia, Turkey). PhD thesis, Sivas-Turkey, Cumhuriyet University, Institute of Science, 269pp.
  • [31]. Iwasakı, A, Tonooka, H, 2005. Validation of a crosstalk correction algorithm 371 for ASTER/SIWR. IEEE Transactions on Geoscience and Remote Sensing, 43, 2747-2751.
  • [32]. Gürsoy, Ö and Kaya, Ş., 2016. Detecting of Lithological Units by Using Terrestrial Spectral Data and Remote Sensing Image, Journal of the Indian Society of Remote Sensing, doi 10.1007/s12524-016-0586-1
  • [33]. Gillespie, A. R., Kahle, A. B., Walker, R. E. 1986. Color enhancement of highly correlated images: I. Decorrelation and HIS contrast stretches. Remote Sensing of Environment, 20, 209-235.
  • [34]. Gürsoy, Ö., Kaya, Ş., Çakir, Z., Tatar, O., Canbaz, O. 2017. Determining lateral offsets of rocks along the eastern part of the North Anatolian Fault Zone (Turkey) using spectral classification of satellite images and field measurements, Geomatics, Natural Hazards and Risk 10.1080/19475705.2017.1318794
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Oktay Canbaz

Önder Gürsoy

Ahmet Gökce

Yayımlanma Tarihi 30 Eylül 2017
Gönderilme Tarihi 8 Mayıs 2017
Kabul Tarihi 20 Haziran 2017
Yayımlandığı Sayı Yıl 2017

Kaynak Göster

APA Canbaz, O., Gürsoy, Ö., & Gökce, A. (2017). Determination of Hydrothermal Alteration Areas by Aster Satellite Images: Ağmaşat Plato- Zara (Sivas) / Turkey Sample. Cumhuriyet Science Journal, 38(3), 419-426. https://doi.org/10.17776/csj.340473