Araştırma Makalesi
BibTex RIS Kaynak Göster

Eco-Friendly Synthesis of Silver Nanoparticles Using Klebsormidium subtile and Evaluation of their Antimicrobial, Anti-Quorum Sensing, and Antibiofilm Activities

Yıl 2024, , 454 - 464, 30.09.2024
https://doi.org/10.17776/csj.1408553

Öz

In this study, both dry and fresh biomass extracts of Klebsormidium subtile were used for the synthesis of silver nanoparticles (AgNPs). The UV-visible spectrum showed an absorption peak at 430 nm, indicating the presence of AgNPs through surface plasmon resonance. FT-IR analysis identified bioactive functional groups, such as amines, which acted as stabilizing agents for the nanoparticles. SEM imaging revealed well-dispersed, spherical AgNPs ranging from 5 to 25 nm and 40 to 60 nm in size, accumulating on cell surfaces. EDS analysis confirmed the presence of elemental silver. The antimicrobial activity of AgNPs derived from both fresh and dry K. subtile extracts was similar, though AgNPs from the dry extract were more effective against Staphylococcus aureus, with inhibition zones of 15.8, 16.2, and 15.2 mm at 1 mM, 2 mM, and 3 mM concentrations, respectively. AgNPs also showed strong activity against Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans, but were less effective against Bacillus cereus and Aeromonas hydrophila. These findings suggest that K. subtile-derived AgNPs have significant antimicrobial potential, particularly against S. aureus and C. albicans, and may be useful in biomedical applications, particularly for treating biofilm-related infections.

Destekleyen Kurum

Kırşehir Ahievran University

Proje Numarası

MMF.A4.21.009

Kaynakça

  • [1] Hassaan M.A., Hosny S., Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae–Review, International Journal of Atmospheric and Oceanic Sciences, 2(1) (2018) 10-22.
  • [2] Çiftçi H., Çalışkan Ç., Öztürk K., Yazici B., Bioactive Nanoparticles Synthesized by Green Method. Black Sea Journal of Engineering and Science, 4 (1) (2021) 1-14.
  • [3] Manivasagan P., Venkatesan J., Sivakumar K., Kim S.K., Actinobacteria Mediated Synthesis of Nanoparticles and their Biological Properties: A Review. Critical Reviews in Microbiology, 42(2) (2016) 209-221.
  • [4] Wiley B., Sun Y., Xia Y., Synthesis of Silver Nanostructures with Controlled Shapes and Properties, Acc Chem Res., 40 (10) (2007) 1067-76.
  • [5] Araga˜o A.P., Oliveira T.M., Quelemes P.V., Perfeito M.L., Carvalho Arau´jo M., Santiago J.A.S., Cardoso V.S., Quaresma P., Leite J.R.S.A, Silva D.A., Green Synthesis of Silver Nanoparticles Using the Seaweed Gracilaria birdiae and their Antibacterial Activity, Arabian Journal of Chemistry, 12 (2016) 4182-4188.
  • [6] Kumari S., Tyagi M., Jagadevan S., Mechanistic Removal of Environmental Contaminants Using Biogenic Nano-Materials, Int. J. Environ. Sci. Technol., 16 (2019) 7591–7606.
  • [7] Yalcin Duygu D., Acikgoz Erkaya İ., Erdem B., Yalcin B.M., Characterization of Silver Nanoparticle Produced by Pseudopediastrum boryanum (Turpin) E. Hegewald and its Antimicrobial Effects on Some Pathogens. Internatıonal Journal of Envıronmental Science and Technology, 16(11) (2019) 7093-7102.
  • [8] Mateia G.M., Mateia S., Cogălniceanu G., Mycosynthesis of Silver Nanoparticles by Aspergillus flavus : Characterization and Antifungal Activity, Digest Journal of Nanomaterials and Biostructures, 18(1) (2023) 411-421.
  • [9] Oves M., Aslam M., Rauf M.A., Qayyum S., Qari H.A., Khan M.S., Alam M.Z., Tabrez S., Pugazhendhi A., Ismail I.M.I., Antimicrobial and Anticancer Activities of Silver Nanoparticles Synthesized from the Root Hair Extract of Phoenix dactylifera, Mater Sci Eng C Mater Biol Appl., 89 (2018) 429-443.
  • [10] Sayed R., Saad H., Hagagy N., Silver Nanoparticles: Characterization and Antibacterial Properties, Rend. Lincei Sci. Fis. Nat., 29(1) (2018) 1-6.
  • [11] El-Sheekh M.M., El-Kassas H.Y., Algal Production of Nano-Silver and Gold: Their Antimicrobial and Cytotoxic Activities: A Review, Journal of Genetic Engineering and Biotechnology, 14(2) (2016) 299-310.
  • [12] Javed B., Nadhman A., Mashwani Z., Optimization, Characterization and Antimicrobial Activity of Silver Nanoparticles Against Plant Bacterial Pathogens Phyto-Synthesized by Mentha longifolia, Mater. Res. Express, 7 (2020) 085406.
  • [13] Bafghi M.H., Safdari H., Nazari R., Darroudi M., Sabouri Z., Zargar M., Zarrinfar H., Evaluation and Comparison of the Effects of Biosynthesized Selenium and Silver Nanoparticles Using Plant Extracts With Antifungal Drugs on the Growth Of Aspergillus and Candida Species, Rend. Lincei Sci. Fis. Nat., 32 (2021) 791–803.
  • [14] Marchioni M., Jouneau P.H., Chevallet M., Michaud-Soret I., Deniaud A., Silver Nanoparticle Fate in Mammals: Bridging in Vitro and in Vivo Studies, Coordination Chemistry Reviews, 364 (2018) 118–36.
  • [15] Pal S., Tak Y.K., Song J.M., Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli, Appl Environ Microbiol., 73(6) (2007) 1712-20.
  • [16] Paluch E., Rewak-Soroczyńska J., Jędrusik I.E., Mazurkiewicz I.E., Jermakow K., Prevention of Biofilm Formation by Quorum Quenching, Appl Microbiol Biotechnol., 104 (2020) 1871–1881
  • [17] Davies D.G., Parsek M.R., Pearson J.P., Iglewski B.H., Costerton J.W., Greenberg E.P., The Involvement of Cell to Cell Signals in the Development of a Bacterial Biofilm, Science, 280 (5361) (1998) 295-8.
  • [18] Roy R., Tiwari M., Donelli G., Tiwari V., Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action, Virulence, 9(1) (2018) 522-554
  • [19] Ozcan S.S., Dieser M., Parker A.E., Balasubramanian N., Foreman C.M., Quorum Sensing Inhibition As a Promising Method to Control Biofilm Growth in Metalworking Fluids, J. Ind. Microbiol. Biotechnol., 46(8) (2019) 1103-1111.
  • [20] Bauer W.D., Robinson J.B., Disruption of Bacterial Quorum Sensing by Other Organisms, Curr Opin Biotechnol., 13 (3) (2002) 234-7.
  • [21] Rajeshkumar S., Malarkodi C., Paulkumar K., Vanaja M., Gnanajobitha G., Annadurai G., Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity Against Clinical Pathogens, Int. J. Met., 11 (2014) 1-8
  • [22] Jena J., Pradhan N., Nayak R.R., Dash B.P., Sukla L.B., Panda P.K., Mishra B.K., Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis, J Microbiol Biotechnol, 24(4) (2014) 522-533.
  • [23] Aziz N., Fatma T., Varma A., Prasad R., Biogenic Synthesis of Silver Nanoparticles Using Scenedesmus Abundans and Evaluation of their Antibacterial Activity, Journal of Nanoparticles, (2014) 1-6.
  • [24] NCCLS, Performance Standards for Antimicrobial Susceptibility Testing: 13th Informational Supplement (Disk Diffusion Supplemental Tables). NCCLS document M100-S13 (M2), supplement to NCCLS document M2-A8 (disk diffusion) (2003).
  • [25] NCCLS, Performance Standards for Antimicrobial Susceptibility Testing: 10th Informational Supplement (Aerobic Dilution, MIC Testing Supplemental Tables. NCCLS document M100-S10 (M7), supplement to NCCLS document M7-A5 (MIC testing) (2000).
  • [26] McClean K.H., Winson M.K., Fish L., Taylor A., Chhabra S.R., Camara M., Daykin M., Lamb J.H., Swift S., Bycroft B.W., Stewart G.S.A.B., Williams P., Quorum Sensing And Chromobacterium violaceum: Exploitation of Violacein Production and Inhibition for the Detection of N-acyl Homoserine Lactones, Microbiology, 143(12) (1997) 3703-11.
  • [27] Khan M.S., Zahin M., Hasan S., Husain F.M., Ahmad I., Inhibition of Quorum Sensing Regulated Bacterial Functions by Plant Essential Oils With Special Reference to Clove Oil, Lett Appl Microbiol., 49(3) (2009) 354-60.
  • [28] Schillaci D., Cusimano M.G., Cunsolo V., Saletti R., Russo D., Vazzana M., Vitale M., Arizza V., Immune Mediators of Sea-Cucumber Holothuria tubulosa (Echinodermata) as Source of Novel Antimicrobial and Anti-Staphylococcal Biofilm Agents, AMB Express, 3(1) (2013) 35.
  • [29] Kathiresan K., Manivannan S., Nabeel M.A., Dhivya B., Studies on Silver Nanoparticles Synthesised by a Marine Fungus, Penicillium fellutanum Isolated from Coastal Mangrove Sediment, Colloids Surf. B, 71 (1) (2009)133-7.
  • [30] Sharma A., Sharma S., Sharma K., Chetri S.P.K., Vashishtha A., Singh P., Kumar R., Rathi B., Agrawal V., Algae as Crucial Organisms in Advancing Nanotechnology: A Systematic Review, J Appl Phycol., 28 (2016) 1759-1774.
  • [31] Aboelfetoh E.F., El-Shenody R.A., Ghobara, M.M., Eco-Friendly Synthesis of Silver Nanoparticles Using Green Algae (Caulerpa serrulata): Reaction Optimization, Catalytic and Antibacterial Activities, Environ Monit Assess., 189 (7) (2017) 349.
  • [32] Sigee D.C., Dean A., Levado E., Tobin M.J., Fourier-Transform Infrared Spectroscopy of Pediastrum duplex Characterization of a Micro-Population Isolated From a Eutrophic Lake, European Journal of Phycology, 37(1) (2002) 19-26.
  • [33] Quester K.B., Avalos-Borja M.B., Castro-Longoria E., Biosynthesis and Microscopic Study of Metallic Nanoparticles, Micron, 55 (2013) 1-27.
  • [34] Kemp M.M., Kumar A., Clement D., Ajayan P., Mousa S., Linhardt R.J., Hyaluronan-and Heparin-Reduced Silver Nanoparticles With Antimicrobial Properties, Nanomedicine, 4(4) (2009) 421-9.
  • [35] Devi L.S., Joshi S.R., Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using: Soil Fungi of High Altitudes of Eastern Himalaya, Mycobiology, 40(1) (2012) 27-34.
  • [36] Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O., A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus, J Biomed Mater Res., 52 (4) (2000) 662-8.
  • [37] Raffi M., Hussain F., Bhatti T.M., Akhter J.I., Hameed A., Hasan M.M., Antibacterial Characterization of Silver Nanoparticles Against E. coli ATCC-15224, J Mater Sci Technol, 24 (2008) 192–196.
  • [38] El Sheekh M.M., Hassan L.H.S., Morsi H.H., Evaluation of Antimicrobial Activities of Blue Green Algae Mediated Silver and Gold Nanoparticles, Rend. Lincei Sci. Fis. Nat., 32 (2021) 747-759.
  • [39] Tang J., Wang W., Chu W., Antimicrobial and Anti-Quorum Sensing Activities of Phlorotannins from Seaweed (Hizikia fusiforme), Front. Cell. Infect. Microbiol., 10 (2020) 586750.
  • [40] Mutungwa M., Alluri N., Majumdar M., Anti-quorum Sensing Activity of Some Commonly Used Traditional Indian Spices, Int J Pharm Pharm Sci., 7(11) (2015) 80-3.
Yıl 2024, , 454 - 464, 30.09.2024
https://doi.org/10.17776/csj.1408553

Öz

Proje Numarası

MMF.A4.21.009

Kaynakça

  • [1] Hassaan M.A., Hosny S., Green Synthesis of Ag and Au Nanoparticles from Micro and Macro Algae–Review, International Journal of Atmospheric and Oceanic Sciences, 2(1) (2018) 10-22.
  • [2] Çiftçi H., Çalışkan Ç., Öztürk K., Yazici B., Bioactive Nanoparticles Synthesized by Green Method. Black Sea Journal of Engineering and Science, 4 (1) (2021) 1-14.
  • [3] Manivasagan P., Venkatesan J., Sivakumar K., Kim S.K., Actinobacteria Mediated Synthesis of Nanoparticles and their Biological Properties: A Review. Critical Reviews in Microbiology, 42(2) (2016) 209-221.
  • [4] Wiley B., Sun Y., Xia Y., Synthesis of Silver Nanostructures with Controlled Shapes and Properties, Acc Chem Res., 40 (10) (2007) 1067-76.
  • [5] Araga˜o A.P., Oliveira T.M., Quelemes P.V., Perfeito M.L., Carvalho Arau´jo M., Santiago J.A.S., Cardoso V.S., Quaresma P., Leite J.R.S.A, Silva D.A., Green Synthesis of Silver Nanoparticles Using the Seaweed Gracilaria birdiae and their Antibacterial Activity, Arabian Journal of Chemistry, 12 (2016) 4182-4188.
  • [6] Kumari S., Tyagi M., Jagadevan S., Mechanistic Removal of Environmental Contaminants Using Biogenic Nano-Materials, Int. J. Environ. Sci. Technol., 16 (2019) 7591–7606.
  • [7] Yalcin Duygu D., Acikgoz Erkaya İ., Erdem B., Yalcin B.M., Characterization of Silver Nanoparticle Produced by Pseudopediastrum boryanum (Turpin) E. Hegewald and its Antimicrobial Effects on Some Pathogens. Internatıonal Journal of Envıronmental Science and Technology, 16(11) (2019) 7093-7102.
  • [8] Mateia G.M., Mateia S., Cogălniceanu G., Mycosynthesis of Silver Nanoparticles by Aspergillus flavus : Characterization and Antifungal Activity, Digest Journal of Nanomaterials and Biostructures, 18(1) (2023) 411-421.
  • [9] Oves M., Aslam M., Rauf M.A., Qayyum S., Qari H.A., Khan M.S., Alam M.Z., Tabrez S., Pugazhendhi A., Ismail I.M.I., Antimicrobial and Anticancer Activities of Silver Nanoparticles Synthesized from the Root Hair Extract of Phoenix dactylifera, Mater Sci Eng C Mater Biol Appl., 89 (2018) 429-443.
  • [10] Sayed R., Saad H., Hagagy N., Silver Nanoparticles: Characterization and Antibacterial Properties, Rend. Lincei Sci. Fis. Nat., 29(1) (2018) 1-6.
  • [11] El-Sheekh M.M., El-Kassas H.Y., Algal Production of Nano-Silver and Gold: Their Antimicrobial and Cytotoxic Activities: A Review, Journal of Genetic Engineering and Biotechnology, 14(2) (2016) 299-310.
  • [12] Javed B., Nadhman A., Mashwani Z., Optimization, Characterization and Antimicrobial Activity of Silver Nanoparticles Against Plant Bacterial Pathogens Phyto-Synthesized by Mentha longifolia, Mater. Res. Express, 7 (2020) 085406.
  • [13] Bafghi M.H., Safdari H., Nazari R., Darroudi M., Sabouri Z., Zargar M., Zarrinfar H., Evaluation and Comparison of the Effects of Biosynthesized Selenium and Silver Nanoparticles Using Plant Extracts With Antifungal Drugs on the Growth Of Aspergillus and Candida Species, Rend. Lincei Sci. Fis. Nat., 32 (2021) 791–803.
  • [14] Marchioni M., Jouneau P.H., Chevallet M., Michaud-Soret I., Deniaud A., Silver Nanoparticle Fate in Mammals: Bridging in Vitro and in Vivo Studies, Coordination Chemistry Reviews, 364 (2018) 118–36.
  • [15] Pal S., Tak Y.K., Song J.M., Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli, Appl Environ Microbiol., 73(6) (2007) 1712-20.
  • [16] Paluch E., Rewak-Soroczyńska J., Jędrusik I.E., Mazurkiewicz I.E., Jermakow K., Prevention of Biofilm Formation by Quorum Quenching, Appl Microbiol Biotechnol., 104 (2020) 1871–1881
  • [17] Davies D.G., Parsek M.R., Pearson J.P., Iglewski B.H., Costerton J.W., Greenberg E.P., The Involvement of Cell to Cell Signals in the Development of a Bacterial Biofilm, Science, 280 (5361) (1998) 295-8.
  • [18] Roy R., Tiwari M., Donelli G., Tiwari V., Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action, Virulence, 9(1) (2018) 522-554
  • [19] Ozcan S.S., Dieser M., Parker A.E., Balasubramanian N., Foreman C.M., Quorum Sensing Inhibition As a Promising Method to Control Biofilm Growth in Metalworking Fluids, J. Ind. Microbiol. Biotechnol., 46(8) (2019) 1103-1111.
  • [20] Bauer W.D., Robinson J.B., Disruption of Bacterial Quorum Sensing by Other Organisms, Curr Opin Biotechnol., 13 (3) (2002) 234-7.
  • [21] Rajeshkumar S., Malarkodi C., Paulkumar K., Vanaja M., Gnanajobitha G., Annadurai G., Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity Against Clinical Pathogens, Int. J. Met., 11 (2014) 1-8
  • [22] Jena J., Pradhan N., Nayak R.R., Dash B.P., Sukla L.B., Panda P.K., Mishra B.K., Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis, J Microbiol Biotechnol, 24(4) (2014) 522-533.
  • [23] Aziz N., Fatma T., Varma A., Prasad R., Biogenic Synthesis of Silver Nanoparticles Using Scenedesmus Abundans and Evaluation of their Antibacterial Activity, Journal of Nanoparticles, (2014) 1-6.
  • [24] NCCLS, Performance Standards for Antimicrobial Susceptibility Testing: 13th Informational Supplement (Disk Diffusion Supplemental Tables). NCCLS document M100-S13 (M2), supplement to NCCLS document M2-A8 (disk diffusion) (2003).
  • [25] NCCLS, Performance Standards for Antimicrobial Susceptibility Testing: 10th Informational Supplement (Aerobic Dilution, MIC Testing Supplemental Tables. NCCLS document M100-S10 (M7), supplement to NCCLS document M7-A5 (MIC testing) (2000).
  • [26] McClean K.H., Winson M.K., Fish L., Taylor A., Chhabra S.R., Camara M., Daykin M., Lamb J.H., Swift S., Bycroft B.W., Stewart G.S.A.B., Williams P., Quorum Sensing And Chromobacterium violaceum: Exploitation of Violacein Production and Inhibition for the Detection of N-acyl Homoserine Lactones, Microbiology, 143(12) (1997) 3703-11.
  • [27] Khan M.S., Zahin M., Hasan S., Husain F.M., Ahmad I., Inhibition of Quorum Sensing Regulated Bacterial Functions by Plant Essential Oils With Special Reference to Clove Oil, Lett Appl Microbiol., 49(3) (2009) 354-60.
  • [28] Schillaci D., Cusimano M.G., Cunsolo V., Saletti R., Russo D., Vazzana M., Vitale M., Arizza V., Immune Mediators of Sea-Cucumber Holothuria tubulosa (Echinodermata) as Source of Novel Antimicrobial and Anti-Staphylococcal Biofilm Agents, AMB Express, 3(1) (2013) 35.
  • [29] Kathiresan K., Manivannan S., Nabeel M.A., Dhivya B., Studies on Silver Nanoparticles Synthesised by a Marine Fungus, Penicillium fellutanum Isolated from Coastal Mangrove Sediment, Colloids Surf. B, 71 (1) (2009)133-7.
  • [30] Sharma A., Sharma S., Sharma K., Chetri S.P.K., Vashishtha A., Singh P., Kumar R., Rathi B., Agrawal V., Algae as Crucial Organisms in Advancing Nanotechnology: A Systematic Review, J Appl Phycol., 28 (2016) 1759-1774.
  • [31] Aboelfetoh E.F., El-Shenody R.A., Ghobara, M.M., Eco-Friendly Synthesis of Silver Nanoparticles Using Green Algae (Caulerpa serrulata): Reaction Optimization, Catalytic and Antibacterial Activities, Environ Monit Assess., 189 (7) (2017) 349.
  • [32] Sigee D.C., Dean A., Levado E., Tobin M.J., Fourier-Transform Infrared Spectroscopy of Pediastrum duplex Characterization of a Micro-Population Isolated From a Eutrophic Lake, European Journal of Phycology, 37(1) (2002) 19-26.
  • [33] Quester K.B., Avalos-Borja M.B., Castro-Longoria E., Biosynthesis and Microscopic Study of Metallic Nanoparticles, Micron, 55 (2013) 1-27.
  • [34] Kemp M.M., Kumar A., Clement D., Ajayan P., Mousa S., Linhardt R.J., Hyaluronan-and Heparin-Reduced Silver Nanoparticles With Antimicrobial Properties, Nanomedicine, 4(4) (2009) 421-9.
  • [35] Devi L.S., Joshi S.R., Antimicrobial and Synergistic Effects of Silver Nanoparticles Synthesized Using: Soil Fungi of High Altitudes of Eastern Himalaya, Mycobiology, 40(1) (2012) 27-34.
  • [36] Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., Kim J.O., A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus, J Biomed Mater Res., 52 (4) (2000) 662-8.
  • [37] Raffi M., Hussain F., Bhatti T.M., Akhter J.I., Hameed A., Hasan M.M., Antibacterial Characterization of Silver Nanoparticles Against E. coli ATCC-15224, J Mater Sci Technol, 24 (2008) 192–196.
  • [38] El Sheekh M.M., Hassan L.H.S., Morsi H.H., Evaluation of Antimicrobial Activities of Blue Green Algae Mediated Silver and Gold Nanoparticles, Rend. Lincei Sci. Fis. Nat., 32 (2021) 747-759.
  • [39] Tang J., Wang W., Chu W., Antimicrobial and Anti-Quorum Sensing Activities of Phlorotannins from Seaweed (Hizikia fusiforme), Front. Cell. Infect. Microbiol., 10 (2020) 586750.
  • [40] Mutungwa M., Alluri N., Majumdar M., Anti-quorum Sensing Activity of Some Commonly Used Traditional Indian Spices, Int J Pharm Pharm Sci., 7(11) (2015) 80-3.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hücre Metabolizması, Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Natural Sciences
Yazarlar

İlkay Açıkgöz Erkaya 0000-0003-1730-4951

Dilek Yalçın 0000-0003-2127-8186

Belgin Erdem 0000-0001-9108-5561

Proje Numarası MMF.A4.21.009
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 22 Aralık 2023
Kabul Tarihi 15 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Açıkgöz Erkaya, İ., Yalçın, D., & Erdem, B. (2024). Eco-Friendly Synthesis of Silver Nanoparticles Using Klebsormidium subtile and Evaluation of their Antimicrobial, Anti-Quorum Sensing, and Antibiofilm Activities. Cumhuriyet Science Journal, 45(3), 454-464. https://doi.org/10.17776/csj.1408553