Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, , 153 - 159, 28.03.2024
https://doi.org/10.17776/csj.1392831

Öz

Kaynakça

  • [1] M. I. Abbas, FEPE Calibration of a HPGe Detector Using Radioactive Sphere Source, Physics Procedia 90 (2017) 364-368.
  • [2] T. Vidmar, I. Aubineau-Laniece, M. J. Anagnostakis, D. Arnold, R. Brettner-Messler, D. Budjas, M. Capogni, M. S. Dias, L. E. De Geer, et al., An intercomparison of Monte Carlo codes used in gamma-ray spectrometry, Applied Radiation and Isotopes, 66 (2008) 764-768.
  • [3] M. Travar, J. Nikolov, N. Todorović, A. Vraničar, P. Völgyesi, P. Kirchknopf, I. Čeliković, T. Milanović and D. Joković, Detailed optimization procedure of an HPGe detector using Geant4 toolkit, Journal of Radioanalytical and Nuclear Chemistry, 332 (2023) 817-828.
  • [4] C. M. Salgado, C. C. Conti and P. H. B. Becker, Determination of HPGe detector response using MCNP5 for 20-150 keV X-rays, Applied Radiation and Isotopes, 64 (2006) 700-705.
  • [5] W. Khan, Q. Zhang, C. He and M. Saleh, Monte Carlo simulation of the full energy peak efficiency of an HPGe detector, Applied Radiation and Isotopes, 131 (2018) 67-70.
  • [6] T. Azli and Z. E. A. Chaoui, Performance revaluation of a N-type coaxial HPGe detector with front edges crystal using MCNPX, Applied Radiation and Isotopes, 97 (2015) 106-112.
  • [7] I. O. B. Ewa, D. Bodizs, S. Czifrus and Z. Molnar, Monte Carlo determination of full energy peak efficiency for a HPGe detector, Applied Radiation and Isotopes, 55 (2001) 103-108.
  • [8] E. Stancu, C. Costache and O. Sima, Monte carlo simulation of p-type HPGe detectors – The dead layer problem, Romanian Reports in Physics, 67 (2015) 465-473.
  • [9] M. H. Bölükdemir, E. Uyar, G. Aksoy, H. Ünlü, H. Dikmen and M. Özgür, Investigation of shape effects and dead layer thicknesses of a coaxial HPGe crystal on detector efficiency by using PHITS Monte Carlo simulation, Radiation Physics and Chemistry, 189 (2021) 109746.
  • [10] J. G. Guerra, J. G. Rubiano, G. Winter, A. G. Guerra, H. Alonso, M. A. Arnedo, A. Tejera, P. Martel and J. P. Bolivar, Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 858 (2017) 113-122.
  • [11] N. Dokania, V. Singh, S. Mathimalar, V. Nanal, S. Pal and R. G. Pillay, Characterization and modeling of a low background HPGe detector, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 745 (2014) 119-127.
  • [12] S. Carson, C. Iliadis, J. Cesaratto, A. Champagne, L. Downen, M. Ivanovic, J. Kelley, R. Longland, J. R. Newton, et al., Ratio of germanium detector peak efficiencies at photon energies of 4.4 and 11.7 MeV: Experiment versus simulation, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 618 (2010) 190-198.
  • [13] P. Dryak and P. Kovar, Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm, Applied Radiation and Isotopes, 64 (2006) 1346-1349.
  • [14] R. Berndt and P. Mortreau, Monte Carlo modelling of a N-type coaxial high purity germanium detector, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 694 (2012) 341-347.
  • [15] S. Sayın, M. Seferinoğlu, E. Yeltepe, B. Çetin and S. Şentürk Lüle, Assessment of the detection efficiency calibration of high-resolution gamma-ray spectrometers by EGSnrc and MCNP6.2 Monte Carlo codes, Radiation Physics and Chemistry, 203 (2023) 110601.
  • [16] K. Östlund, C. Samuelsson and C. L. Rääf, Experimentally determined vs: Monte Carlo simulated peak-to-valley ratios for a well-characterised n-type HPGe detector, Applied Radiation and Isotopes, 95 (2015) 94-100.
  • [17] J. Boson, G. Ågren and L. Johansson, A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 587 (2008) 304-314.
  • [18] E. Uyar, G. Aksoy, H. Ünlü and M. H. Bölükdemir, Investigation of the effect of copper contact pin on efficiency in HPGe detectors using Monte Carlo method, Journal of Instrumentation, 16 (2021) T11003.
  • [19] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. ichiro Abe, T. Kai, P. E. Tsai, N. Matsuda, et al., Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, Journal of Nuclear Science and Technology, 55 (2018) 684-690.
  • [20] E. Uyar and M. H. Bölükdemir, Characterisation of two p-type HPGe detectors by measurements and Monte Carlo simulations, Measurement, 204 (2022) 112092.
  • [21] G. Kanisch, T. Vidmar and O. Sima, Testing the equivalence of several algorithms for calculation of coincidence summing corrections, Applied Radiation and Isotopes, 67 (2009) 1952-1956.

Evaluation of the Central Copper Contact Pin Effect in High-Energy Region in Gamma-ray Spectrometry

Yıl 2024, , 153 - 159, 28.03.2024
https://doi.org/10.17776/csj.1392831

Öz

The detector must be modeled in the most accurate way when Monte Carlo simulation method is used for efficiency calculation in gamma-ray spectrometric studies. This study aims to investigate the effect of the copper contact pin inside the detector on the efficiency of the HPGe detector for high gamma-ray energies. Simulated efficiencies were determined for 6 different energies in the energy range of 1460.8 keV up to 2614.5 keV in point and cylindrical source geometry. According to the modeling using PHITS Monte Carlo simulation code, the presence of copper contact pin at high gamma-ray energies caused a decrease of up to 6% in detector efficiency. It was emphasized that this ignored parameter should be included in the modeling like all other geometric parameters used in detector modeling, by showing the effect on the efficiency.

Kaynakça

  • [1] M. I. Abbas, FEPE Calibration of a HPGe Detector Using Radioactive Sphere Source, Physics Procedia 90 (2017) 364-368.
  • [2] T. Vidmar, I. Aubineau-Laniece, M. J. Anagnostakis, D. Arnold, R. Brettner-Messler, D. Budjas, M. Capogni, M. S. Dias, L. E. De Geer, et al., An intercomparison of Monte Carlo codes used in gamma-ray spectrometry, Applied Radiation and Isotopes, 66 (2008) 764-768.
  • [3] M. Travar, J. Nikolov, N. Todorović, A. Vraničar, P. Völgyesi, P. Kirchknopf, I. Čeliković, T. Milanović and D. Joković, Detailed optimization procedure of an HPGe detector using Geant4 toolkit, Journal of Radioanalytical and Nuclear Chemistry, 332 (2023) 817-828.
  • [4] C. M. Salgado, C. C. Conti and P. H. B. Becker, Determination of HPGe detector response using MCNP5 for 20-150 keV X-rays, Applied Radiation and Isotopes, 64 (2006) 700-705.
  • [5] W. Khan, Q. Zhang, C. He and M. Saleh, Monte Carlo simulation of the full energy peak efficiency of an HPGe detector, Applied Radiation and Isotopes, 131 (2018) 67-70.
  • [6] T. Azli and Z. E. A. Chaoui, Performance revaluation of a N-type coaxial HPGe detector with front edges crystal using MCNPX, Applied Radiation and Isotopes, 97 (2015) 106-112.
  • [7] I. O. B. Ewa, D. Bodizs, S. Czifrus and Z. Molnar, Monte Carlo determination of full energy peak efficiency for a HPGe detector, Applied Radiation and Isotopes, 55 (2001) 103-108.
  • [8] E. Stancu, C. Costache and O. Sima, Monte carlo simulation of p-type HPGe detectors – The dead layer problem, Romanian Reports in Physics, 67 (2015) 465-473.
  • [9] M. H. Bölükdemir, E. Uyar, G. Aksoy, H. Ünlü, H. Dikmen and M. Özgür, Investigation of shape effects and dead layer thicknesses of a coaxial HPGe crystal on detector efficiency by using PHITS Monte Carlo simulation, Radiation Physics and Chemistry, 189 (2021) 109746.
  • [10] J. G. Guerra, J. G. Rubiano, G. Winter, A. G. Guerra, H. Alonso, M. A. Arnedo, A. Tejera, P. Martel and J. P. Bolivar, Computational characterization of HPGe detectors usable for a wide variety of source geometries by using Monte Carlo simulation and a multi-objective evolutionary algorithm, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 858 (2017) 113-122.
  • [11] N. Dokania, V. Singh, S. Mathimalar, V. Nanal, S. Pal and R. G. Pillay, Characterization and modeling of a low background HPGe detector, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 745 (2014) 119-127.
  • [12] S. Carson, C. Iliadis, J. Cesaratto, A. Champagne, L. Downen, M. Ivanovic, J. Kelley, R. Longland, J. R. Newton, et al., Ratio of germanium detector peak efficiencies at photon energies of 4.4 and 11.7 MeV: Experiment versus simulation, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 618 (2010) 190-198.
  • [13] P. Dryak and P. Kovar, Experimental and MC determination of HPGe detector efficiency in the 40-2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm, Applied Radiation and Isotopes, 64 (2006) 1346-1349.
  • [14] R. Berndt and P. Mortreau, Monte Carlo modelling of a N-type coaxial high purity germanium detector, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 694 (2012) 341-347.
  • [15] S. Sayın, M. Seferinoğlu, E. Yeltepe, B. Çetin and S. Şentürk Lüle, Assessment of the detection efficiency calibration of high-resolution gamma-ray spectrometers by EGSnrc and MCNP6.2 Monte Carlo codes, Radiation Physics and Chemistry, 203 (2023) 110601.
  • [16] K. Östlund, C. Samuelsson and C. L. Rääf, Experimentally determined vs: Monte Carlo simulated peak-to-valley ratios for a well-characterised n-type HPGe detector, Applied Radiation and Isotopes, 95 (2015) 94-100.
  • [17] J. Boson, G. Ågren and L. Johansson, A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 587 (2008) 304-314.
  • [18] E. Uyar, G. Aksoy, H. Ünlü and M. H. Bölükdemir, Investigation of the effect of copper contact pin on efficiency in HPGe detectors using Monte Carlo method, Journal of Instrumentation, 16 (2021) T11003.
  • [19] T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. ichiro Abe, T. Kai, P. E. Tsai, N. Matsuda, et al., Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, Journal of Nuclear Science and Technology, 55 (2018) 684-690.
  • [20] E. Uyar and M. H. Bölükdemir, Characterisation of two p-type HPGe detectors by measurements and Monte Carlo simulations, Measurement, 204 (2022) 112092.
  • [21] G. Kanisch, T. Vidmar and O. Sima, Testing the equivalence of several algorithms for calculation of coincidence summing corrections, Applied Radiation and Isotopes, 67 (2009) 1952-1956.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nükleer Fizik
Bölüm Natural Sciences
Yazarlar

Esra Uyar 0000-0001-7585-9635

Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 18 Kasım 2023
Kabul Tarihi 26 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Uyar, E. (2024). Evaluation of the Central Copper Contact Pin Effect in High-Energy Region in Gamma-ray Spectrometry. Cumhuriyet Science Journal, 45(1), 153-159. https://doi.org/10.17776/csj.1392831